
CS/ENGRD 2110
SUMMER 2018
Lecture 11:  Graphs

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming 
and data-structures

1







These aren't the graphs we're looking for



◻ A graph is a data structure

◻ A graph has

⬜ a set of vertices

⬜ a set of edges between 
vertices

◻ Graphs are a generalization of 
trees

Graphs



This is a graph



Another transport graph



This is a graph



Viewing the map of states as a graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Each state is a point on the graph, and neighboring states are connected 
by an edge.

Do the same thing for a map of the world showing countries



A circuit graph (Intel 4004)



V.J. Wedeen and L.L. Wald, Martinos Center for Biomedical Imaging at 
MGH

This is a graph



This is a graph(ical model) that 
has learned to recognize cats



Graphs

K5 K3,3



Undirected graphs

◻ A undirected graph is a pair (V, E) where

⬜ V is a (finite) set

⬜ E is a set of pairs (u, v) where u,v ∈ V

■ Often require u ≠ v (i.e. no self-loops)

◻ Element of V is called a vertex or node

◻ Element of E is called an edge or arc

◻ |V| = size of V, often denoted by n

◻ |E| = size of E, often denoted by m



Undirected graphs

◻ A undirected graph is a pair (V, E) where

⬜ V is a (finite) set

⬜ E is a set of pairs (u, v) where u,v ∈ V

■ Often require u ≠ v (i.e. no self-loops)

◻ Element of V is called a vertex or node

◻ Element of E is called an edge or arc

◻ |V| = size of V, often denoted by n

◻ |E| = size of E, often denoted by m

A

B C

DE

V = {A, B, C, D, E}
E = {(A, B), (A, C), 
         (B, C),  (C, D)}

|V| = 5
|E| = 4



Directed graphs

◻ A directed graph (digraph) is a lot like an 
undirected graph 

⬜ V is a (finite) set

⬜ E is a set of ordered pairs (u, v) where u,v ∈ V

◻ Every undirected graph can be easily converted to 
an equivalent directed graph via a simple 
transformation:

⬜ Replace every undirected edge with two 
directed edges in opposite directions

◻ … but not vice versa

A

B C

DE

V = {A, B, C, D, E}
E = {(A, C), (B, A), 
         (B, C),  (C, D),
         (D, C)}
|V| = 5
|E| = 5



Graph terminology

◻ Vertices u and v are called
⬜ the source and sink of the directed edge (u, v), 

respectively
⬜ the endpoints of (u, v) or {u, v}

◻ Two vertices are adjacent if they are connected by an 
edge

A

B C

DE

A

B C

DE



Graph terminology

◻ The outdegree of a vertex u in a directed graph is the 
number of edges for which u is the source

◻ The indegree of a vertex v in a directed graph is the 
number of edges for which v is the sink

◻ The degree of a vertex u in an undirected graph is the 
number of edges of which u is an endpoint

A

B C

DE

A

B C

DE



More graph terminology

◻ A path is a sequence v
0
,v

1
,v

2
,...,v

p
 of vertices such that for 

0 ≤ i < p,

⬜ (v
i
, v

i+1
)∈E if the graph is directed

⬜ {v
i
, v

i+1
}∈E if the graph is undirected

◻ The length of a path is its number of edges 

◻ A path is simple if it doesn’t repeat any vertices

A

B C
DE

A

B C
DE

DAG

Not a DAG

Path
A,C,D



More graph terminology

◻ A cycle is a path v
0
, v

1
, v

2
, ..., v

p
 such that v

0
 = v

p

◻ A cycle is simple if it does not repeat any vertices except 
the first and last

◻ A graph is acyclic if it has no cycles

◻ A directed acyclic graph is called a DAG

A

B C
DE

A

B C
DE

DAG

Not a DAG

Path
A,C,D



Bipartite graphs

◻ A directed or undirected graph is bipartite if the vertices can be partitioned 
into two sets such that no edge connects two vertices in the same set

◻ The following are equivalent

⬜ G is bipartite

⬜ G is 2-colorable

⬜ G has no cycles of odd length
1

2

3

A

B

C

D



Representations of graphs

2 3

2 4
3

1
2

3
4

Adjacency List Adjacency Matrix

1 2

34

    1  2   3   4

1
2
3
4

0   1   0   1
0   0   1   0
0   0   0   0
0   1   1   0



    1   2   3

1

2

3

Graph Quiz

3 2

3

1

2

3 1

0     1   1 

0     0   0

0     1   0

Graph 1: Graph 2:

Which of the following two graphs are DAGs?
Directed Acyclic Graph



    1   2   3

1

2

3

Graph Quiz

3 2

3

1

2

3 1

0   1   1 

0   0   0

0   1   0

1 3

2

1 3

2



Adjacency matrix or adjacency list?

⬜ v = number of vertices

⬜ e = number of edges

⬜ d(u) = degree of u = no. edges leaving u
◻ Adjacency Matrix

⬜ Uses space O(v2)
⬜ Enumerate all edges in time O(v2)
⬜ Answer “Is there an edge from u1 to u2?” in O(1) time

⬜ Better for dense graphs (lots of edges)

    1  2   3   4

1
2
3
4

0   1   0   1
0   0   1   0
0   0   0   0
0   1   1   0



⬜ v = number of vertices

⬜ e = number of edges

⬜ d(u) = degree of u = no. edges leaving u
◻ Adjacency List

⬜ Uses space O(v + e)
⬜ Enumerate all edges in time O(v + e)
⬜ Answer “Is there an edge from u1 to u2?” in O(d(u1)) time

⬜ Better for sparse graphs (fewer edges)

232431234

Adjacency matrix or adjacency list?



What can we do on graphs?

◻ Search

⬜ Depth-first search

⬜ Breadth-first search

◻ Shortest paths

⬜ Dijkstra's algorithm

◻ Minimum spanning trees

⬜ Jarnik/Prim/Dijkstra algorithm

⬜ Kruskal's algorithm


