1

Obiject-oriented programming
and data-structures

CS/ENGRD 2110
SUMMER 2018

KONINGSBERGA

i%a‘%:&’ :

L SR).
‘M@@E

3@@@ >

KONINGSBERGA

These aren't the graphs we're looking for

Graphs

A graph is a data structure

A graph has
a set of vertices

a set of edges between
vertices

Graphs are a generalization of
frees

==

Q—0—0—0

O—O0—0—0

O—O0—0—0

O—O—0—0

This is a graph

E

3
3
A

Another transport graph

7SS

| Natural Area

S

% Ave
niversi &% =
shliesis LD

This is a graph

Viewing the map of states as a graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Each state is a point on the graph, and neighboring states are connected
by an edge.

Do the same thing for a map of the world showing countries

A circuit graph (Intel 4004)

BT WA LA
o5 55
R H R

e

This is a graph(ical model) that

_ has learned to recognize cats

Diagonal

NS
XA
NN

Y
at s

4
O
PSAZS

4
oJ
X

SN
¢
X

Q¢
%
X

PAN
QS
N
X

Graphs

i
g

il

/ \)

)

o—0

7\ 7\) 7\
) g T/ T/ T/
7\ 7\))\

=4 7 A \ g
7\ 7\ 7O 7\

- ~g7 N7 g7
A A A NS

0—0—0—0

3,3

Undirected graphs

A undirected graph is a pair (V, E) where
Vis a (finite) set
Eis a set of pairs (u, v) where u,v € V
Often require u # v (i.e. no self-loops)

Element of Vis called a vertex or node
Element of Eis called an edge or arc

|V] = size of V, often denoted by n
|E| = size of E, oftfen denoted by m

Undirected graphs

A undirected graph is a pair (V, E) where
Vis a (finite) set
Eis a set of pairs (u, v) where u,v € V
Often require u # v (i.e. no self-loops)

Element of Vis called a vertex or node
Element of Eis called an edge or arc

|V] = size of V, often denoted by n
|E| = size of E, oftfen denoted by m

V=1{4,B,C,D,E)

E={(4, B), (4, O),
(B, O), (C,D)j
V1=35

|[E] =4

Directed graphs

A directed graph (digraph) is a lot like an
undirected graph

Vis a (finite) set
Eis a set of ordered pairs (u, v) where u,v € V

Every undirected graph can be easily converted to
an equivalent directed graph via a simple

transformation: V={4,B,C, D, E}
Replace every undirected edge with two E = (4, 0), (B, 4),
directed edges in opposite directions (B, O), (C, D),

(D, O)}
V=5
... but not vice versa IE|=5

Graph terminology

1 Vertices u and v are called

"1 the source and sink of the directed edge (u, v),
respectively

"1 the endpoints of (u, v) or {u, v}

- Two vertices are adjacent if they are connected by an
edge

Graph terminology

The outdegree of a vertex u in a directed graph is the
number of edges for which u is the source

The indegree of a vertex vin a directed graph is the
number of edges for which v is the sink

The degree of a vertex u in an undirected graph is the
number of edges of which u is an endpoint

More graph terminology

A pathis a sequence v, Vi VoV, of vertices such that for
O<i<p,

] (v/, vm)E Eif the graph is directed
v, v JE Eif the graph is undirected

The length of a path is its number of edges

A pathis simple if it doesn’t repeat any vertices

Not a DAG

More graph terminology

[N\,CD
o Acycleisapathyv, v, v, .., v, such that v, = v, B‘C

1 Acycleis simple if it does not repeat any vertices except @ D
the first and last DAG

1 Agraphis acyclic if it has no cycles

1 Adirected acyclic graphis called a DAG

Not a DAG

Bipartite graphs
]

- Adirected or undirected graph is bipartite if the vertices can be partitioned
into two sets such that no edge connects two vertices in the same set

= The following are equivalent
[Gis bipartite
1 Gis 2-colorable
7 Ghas no cycles of odd length

Representations of graphs

4 3
Adjacency List Adjacency Matrix
1 "R O " magd 123 4
2 "3 10 10
20 010
_ 30000
- — Eu 40 110

Graph Quiz

Which of the following two graphs are DAGs?
Directed Acyclic Graph

Graph 1: Graph 2:
1 2 3
1
2 o g 3 | 0 0 |o0
- R

Graph Quiz

1 2 3
0 1 1
0 0 0

D

(o

D

Adjacency matrix or adjacency list?

v = number of vertices 12
e = number of edges 10 1
d(u) = degree of u = no. edges leaving u 2 8 8
Adjacency Matrix 2 0 1

Uses space O(1?)

Enumerate all edges in time O(1?)

Answer “Is there an edge from ul to u2?” in O(1) time
Better for dense graphs (lots of edges)

w

- O -0

OO -

Adjacency matrix or adjacency list?

v = number of vertices -_>--> -
e = number of edges -_>-

d(u) = degree of u = no. edges leaving u -

Adjacency List - _>-'> -

Uses space O(v + e)

Enumerate all edges in time O(v + ¢)
Answer “Is there an edge from u/ to u2?” in O(d(ul)) time
Better for sparse graphs (fewer edges)

What can we do on graphs?

Search
Depth-first search
Breadth-first search

Shortest paths
Dijkstra's algorithm

Minimum spanning trees
Jarnik/Prim/Dijkstra algorithm
Kruskal's algorithm

