Object-oriented programming and data-structures

CS/ENGRD 2110 SUMMER 2018

KONINGSBERGA

These aren't the graphs we're looking for

Graphs

\square A graph is a data structure
\square A graph has
\square a set of vertices
\square a set of edges between vertices
\square Graphs are a generalization of trees

This is a graph

Another transport graph

This is a graph

The internet's undersea world

Viewing the map of states as a graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Each state is a point on the graph, and neighboring states are connected by an edge.

Do the same thing for a map of the world showing countries

A circuit graph (Intel 4004)

This is a graph

V.J. Wedeen and L.L. Wald, Martinos Center for Biomedical Imaging at

This is a graph(ical model) that has learned to recognize cats

Graphs

Undirected graphs

$\square \quad$ A undirected graph is a pair (V, E) where
$\square V$ is a (finite) set
$\square E$ is a set of pairs (u, v) where $u, v \in V$

- Often require $u \neq v$ (i.e. no self-loops)
\square Element of V is called a vertex or node
\square Element of E is called an edge or arc
$\square \quad \mid V=$ size of V, often denoted by n
$\square \quad|E|=$ size of E, often denoted by m

Undirected graphs

$\square \quad$ A undirected graph is a pair (V, E) where
$\square V$ is a (finite) set
$\square E$ is a set of pairs (u, v) where $u, v \in V$

- Often require $u \neq v$ (i.e. no self-loops)
\square Element of V is called a vertex or node
\square Element of E is called an edge or arc
$\square \quad \mid V=$ size of V, often denoted by n
$\square \quad|E|=$ size of E, often denoted by m

$$
\begin{aligned}
& \boldsymbol{V}=\{A, B, C, D, E\} \\
& \boldsymbol{E}=\{(A, B),(A, C), \\
&(B, C),(C, D)\} \\
&|\boldsymbol{V}|=5 \\
&|\boldsymbol{E}|= 4
\end{aligned}
$$

Directed graphs

\square A directed graph (digraph) is a lot like an undirected graph
$\square V$ is a (finite) set
$\square E$ is a set of ordered pairs (u, v) where $u, v \in V$
$\square \quad$ Every undirected graph can be easily converted to an equivalent directed graph via a simple transformation:
\square Replace every undirected edge with two directed edges in opposite directions

$$
\begin{aligned}
\boldsymbol{V}= & \{A, B, C, D, E\} \\
\boldsymbol{E}= & \{(A, C),(B, A), \\
& (B, C),(C, D), \\
& (D, C)\} \\
|\boldsymbol{V}|= & 5 \\
|\boldsymbol{E}|= & 5
\end{aligned}
$$

Graph terminology

$\square \quad$ Vertices u and v are called
\square the source and sink of the directed edge (u, v), respectively
\square the endpoints of (u, v) or $\{u, v\}$
\square Two vertices are adjacent if they are connected by an
 edge

Graph terminology

$\square \quad$ The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
$\square \quad$ The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
$\square \quad$ The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

More graph terminology

\square A path is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ of vertices such that for $0 \leq i<p$,
$\square \quad\left(v, v_{i+1}\right) \in E$ if the graph is directed
$\square\left\{v_{,} v_{i+1}\right\} \in E$ if the graph is undirected

$\square \quad$ The length of a path is its number of edges
\square A path is simple if it doesn't repeat any vertices

Not a DAG

More graph terminology

\square A cycle is a path $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ such that $v_{0}=v_{p}$
\square A cycle is simple if it does not repeat any vertices except the first and last
\square A graph is acyclic if it has no cycles
\square A directed acyclic graph is called a DAG

Not a DAG

Bipartite graphs

\square A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that no edge connects two vertices in the same set
$\square \quad$ The following are equivalent
$\square G$ is bipartite
$\square G$ is 2-colorable
$\square G$ has no cycles of odd length

Representations of graphs

Adjacency List

Adjacency Matrix
1234

$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	0	0	1	0
3	0	0	0	0
4	0	1	1	0

Graph Quiz

Which of the following two graphs are DAGs?
Directed Acyclic Graph

Graph 2:

Graph 2:						
1						
2						
				0	1	1
:---	:---	:---				
	0	0				
	0	1				

Graph Quiz

Adjacency matrix or adjacency list?

$\square v=$ number of vertices

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0			
$\mathbf{2}$	0	0	1	1
$\mathbf{2}$	0	0	0	0
$\mathbf{3}$	0	1	1	0
$\mathbf{4}$				

$\square e=$ number of edges
$\square d(u)=$ degree of $u=$ no. edges leaving u

- Adjacency Matrix
\square Uses space $\mathrm{O}\left(v^{2}\right)$
\square Enumerate all edges in time $\mathrm{O}\left(v^{2}\right)$
\square Answer "Is there an edge from $u 1$ to $u 2$?" in $\mathrm{O}(1)$ time
\square Better for dense graphs (lots of edges)

Adjacency matrix or adjacency list?

$\square v=$ number of vertices
$\square e=$ number of edges
$\square d(u)=$ degree of $u=$ no. edges leaving u

- Adjacency List

\square Uses space $\mathrm{O}(v+e)$
\square Enumerate all edges in time $\mathrm{O}(v+e)$
\square Answer "Is there an edge from $u 1$ to $u 2$?" in $\mathrm{O}(d(u 1))$ time
\square Better for sparse graphs (fewer edges)

What can we do on graphs?

- Search
\square Depth-first search
\square Breadth-first search
- Shortest paths
\square Dijkstra's algorithm
- Minimum spanning trees
\square Jarnik/Prim/Dijkstra algorithm
\square Kruskal's algorithm

