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The purpose of this problem set is for you to get practice developing loop invariants and loops. As long as this is 

a good attempt, with most things right, you get 100%. This practice will help you understand later lecture that cover 
searching, sorting, and related algorithms that manipulate arrays.  

It may help to do this with another person or two, together. If you do that, put both names and netids at the top. If 
you have a question, ask the TA or the people around you. Go ahead, discuss things with those around you. Some of 
these questions are mechanical, asking for a definition or something like that. Some ask you to write code or execute 
a method call. You can look at notes or a book, get on the internet and read the exception-handling webpage, watch 
the videos, google something, whatever. 

1. The four loopy questions. Understanding and knowing the 
four loopy questions is key to understanding all this loop stuff. 
Below, write the four loopy questions, giving (a) the general 
idea and (b) a precise statement of what that means. The 
annotated flow chart to the right should help you. We do the 
first loopy question for you. 

 (1) Does it start right? Is {Q} init {P} true? 

 

 

 

 

 

 

 

 

 

 

In the exercises below, don’t be concerned with declaring variables. Assume they are all declared. 

2. Does it start right? Below are preconditions Q and loop invariants P. To the right of each pair, write initialization 
init so that {Q} init {P} is true. See these footnotes.1  

 

2A.  Q:  true          

        P:   b  =  all elements of c[0..k-1] are 0         

                                

2B.  Q: true  

        P:   b =  all elements of c[k..c.length-1] are 0                              

          
  

																																																								
1	{true} S {P} means that in any starting state, execution of S will terminate with P true. 
b  =  all elements of c[0..k-1] are 0     means: if all elements of c[0..k-1] are 0, b is true; otherwise it is false. 
The sum of an empty set is 0; its product 1. This is because 0 + anything = anything  and  1 * anything = anything. 
 

	!B		&&		P 

init								Q S 	
					
B P B		&&	P 

!B	&&	P				=>			R			 
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3. Does it stop right? Below are loop invariants P and postconditions R. To the right of each pair, write the loop 
condition B such that  !B && P => R.  

 

3A.  P:   b = all elements of c[0..k-1] are 0   

        R:   b = all elements of c[0..c.length-1] are 0 

 

3B.   P: b = all elements of c[k..c.length-1] are 0  

        R: b = all elements of c[0..c.length-1] are 0 

 

4. Does the repetend do what it is supposed to do? Repetend S of the loop has to make progress toward 
termination and keep the invariant true, i.e. {B && P} S {P} must be true. Below, write the loop body given B, P, 
and the expression that must be decreased to make progress toward termination. 

 

4A.  B: k < c.length 

        P:   b = all elements of c[0..k-1] are 0              

        Repetend should increase k    

 

4B.   B: 0 < k 

        P: b = all elements of c[k..c.length-1] are 0  

        Repetend should decrease k     

   

5. Generalizing array diagrams. Below is a pair of assertions---given as array diagrams---for the Dutch National 
Flag algorithm. In this algorithm, array b contains red, white, and blue balls. The idea is to swap array elements so 
that the red ones are first, then the white ones, and then the blue ones. There are four possible invariants that have 4 
segments; draw diagrams for all 4. Add extra variables to mark boundaries of two adjacent array segments if 
necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

														?	Q:	b	
0																														b.length																																			

					reds									whites									blues		R:	b	
	0																																																												b.length								
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6. Linear search. We want a loop (with initialization) that finds the last occurrence b[h] of a value v in array b, 
setting h to -1 if v is not in b. Below, we give the precondition Q, postcondition R, and loop invariant P. Look at the 
postcondition. If h = -1, then the array diagram tells you that b[0..h] is empty and v is not in the array. P arises by 
deleting part of R —the assertion h = -1 or b[h] = v. Write the loop to the right of the array diagrams, using the four 
loopy questions. Hint: The loop body will be very simple. 

 

     

       

 

 

 
 

 
 
 
 

 

 

 

 

 

7. Partition algorithm. b[h] contains a value x. x is not a variable and cannot be used in the program; it just denotes 
what is in b[h]. The algorithm is supposed to swap values of b[h+1..k] around until the postcondition is true, using a 
variable j (which has to be given an initial value). First, generalize Q and R to an invariant and then write the 
algorithm using the four loopy questions. Do NOT change h and k! 

 

  

  

      

 
 

														?	Q:	b	
0																														b.length																																			

							?								v	is	not	here	R:	b	
0										h																																				b.length	

and	(h	=	-1	or	b[h]	=	v)	

							?								v	is	not	here	P:	b	
0										h																																				b.length	

	x																	?	Q:	b		
	h																																								k		

	x									≤	x										≥	x	R:	b		
	h																			j																			k		


