
CS2110
Spring 2018CONCLUSION

History
2

Programming and computers:

Momentous changes since the 1940s –or since even the use
of punch cards and attempt at automation …

3

Punch cards

Mechanical loom invented by Joseph Marie Jacquard in 1801.
Used the holes punched in pasteboard punch cards to control
the weaving of patterns in fabric.
Punch card corresponds to one row of the design.
Based on earlier invention by French mechanic Falcon in 1728.

Jacquard loom

Loom still
used in China

4

Charles Babbage designed a “difference engine” in 1822

Compute mathematical tables for log, sin, cos,
other trigonometric functions.

The mathematicians doing the
calculations were called

computers

No electricity

5

Oxford English Dictionary, 1971

Computer: one who computes; a calculator, rekoner. spec. a
person employed to make calculations in an observatory, in
surveying. etc.

1664: Sir T. Browne. The calendars of these computers.

1704. T. Swift. A very skillful computer.

1744. Walpole. Told by some nice computers of national
glory.

1855. Brewster Newton. To pay the expenses of a computer
for reducing his observations.

The mathematicians doing the
calculations were called

computers

6

Charles Babbage planned to use cards to store programs
in his Analytical engine. (First designs of real computers,
middle 1800s until his death in 1871.)

First programmer was Ada
Lovelace, daughter of poet
Lord Byron.

Privately schooled in math.
One tutor was Augustus De
Morgan.

The Right Honourable
Augusta Ada, Countess of
Lovelace.

7

Herman Hollerith.
His tabulating machines used in compiling the
1890 Census.
Hollerith's patents were acquired by the
Computing-Tabulating-Recording Co.
Later became IBM.

The operator places
each card in the
reader, pulls down a
lever, and removes
the card after each
punched hole is
counted.

Hollerith 1890 Census Tabulator

8

Computers, calculating the US census

9

9

1935-38. Konrad Zuse - Z1 Computer

1935-39. John Atanasoff and Berry (grad student). Iowa State

1944. Howard Aiken & Grace Hopper Harvard Mark I
Computer

1946. John Presper Eckert & John W. Mauchly
ENIAC 1 Computer 20,000 vacuum tubes later ...

1947-48 The Transistor, at Bell-labs.

1953. IBM. the IBM 701.

History of computers

10

10

How did Gries get into Computer Science?

1959. Took his only computer course. Senior, Queens College.

1960. Mathematician-programmer at the US Naval Weapons Lab
in Dahlgren, Virginia.

11

11

1960. Mathematician-programmer at the US Naval Weapons Lab
in Dahlgren, Virginia.

CLI SEX,'M' Male?
BNO IS_FEM If not, branch around
L 7,MALES Load MALES into register 7;
LA 7,1(,7) add 1;
ST 7,MALES and store the result
B GO_ON Finished with this portion

IS_FEM L 7,FEMALES If not male, load FEMALES into register 7;
LA 7,1(,7) add 1;
ST 7,FEMALES and store

GO_ON EQU *

if (SEX == ‘M’) MALES= MALES + 1;
else FEMALES= FEMALES + 1;

Programmed in Fortran and IBM 7090 assembly language

12

12

1960: Big Year for Programming Languages

LISP (List Processor): McCarthy, MIT (moved to Stanford). First
functional programming language. No assignment statement. Write
everything as recursive functions. (take 3110)

COBOL (Common Business-Oriented Language). Became most
widely used language for business, data processing.

ALGOL (Algorithmic Language). Developed by an international
team over a 3-year period. McCarthy was on it, John Backus was
on it (developed Fortran in mid 1950’s). Gries’s soon-to-be PhD
supervisor, Fritz Bauer of Munich, led the team.

13

13

1959. Took his only computer course. Senior, Queens College.

1960. Mathematician-programmer at the US Naval Weapons Lab in
Dahlgren, Virginia.

1962. Back to grad school, in Math, at University of Illinois

Graduate Assistantship: Help two Germans write the ALCOR-
Illinois 7090 Compiler.

John Backus, FORTRAN, mid 1950’s: 30 people years

This compiler: 6 ~people-years

Today, CS compiler writing course: 2 students, one semester

1963-66 Dr. rer. nat. in Math in Munich Institute of Technology

1966-69 Asst. Professor, Stanford CS

1969- Cornell!

14

Late 1960s

IBM 360
Mainframes

Write programs on IBM “punch
cards. Deck of cards making up
a program trucked to Langmuir
labs by the airport 2-3 times a
day; get them back, with output,
3-4 hours later

15

About 1973. BIG STEP FORWARD

1. Write program on punch cards.

2. Wait in line (20 min) to put cards in
card reader in Upson basement

3. Output comes back in 5 minutes

November 1981,
Terak with 56K

RAM, one floppy
drive: $8,935.

Want 10MB hard drive?
$8,000 more

About 1979. Teraks

Prof. Tim Teitelbaum
sees opportunity. He
and grad student Tom
Reps develop “Cornell
Program Synthesizer”. Year
later, Cornell uses Teraks in
its prog course.

40 lbs

About 1973. BIG
STEP FORWARD

Switched to using
the programming
language Pascal,
developed by Niklaus
Wirth at Stanford.

16

1983-84

Switched to
Macintosh in labs

1980s

CS began getting
computers on their
desks.

Late 1980s

Put fifth floor addition on Upson.
We made the case that our labs
were in our office and therefore
we need bigger offices.

Nowadays

Everybody has a computer in their
office.

2014

Moved into Gates Hall!

17

Programming languages. Dates approximate

Year Major languages Teach at Cornell
1956’s Fortran
1960 Algol, LISP, COBOL
1965 PL/I PL/C (1969)
1970 C
1972 Pascal
1980’s Smalltalk (object-oriented) Pascal (1980’s)
1980’s (late) C++
1996 Java C and C++
2008 Java / Matlab
2011 Python / Matlab / Java

Java is not the Only OO Language
18

Java is not the Only OO Language

¨ Usability
¨ Performance
¨ Security

19

Performance

¨ Java has a reputation for being slow
¨ Early versions were slow
¨ Java programs start up slow

20

Compiling in Java

¨ Compiler converts
source code (*.java)
into platform-neutral
bytecode (*.class)

¨ JVM runs bytecode
using just-in-time
compilation

¨ JIT performs dynamic
code optimization

21

Java Code

Java Bytecode

Java Virtual Machine (JVM)

JIT
Machine

Code

Garbage Collection

¨ What happens to objects after you are done with
them?

¨ Why don't you run out of memory?
¨ JVM implements garbage collection. It detects and

frees objects that are no longer needed

22

Reachable Objects

¨ An object is reachable if it is referenced anywhere
in the call stack
¤ local variables
¤ method parameters
¤ global variables

¨ An object is reachable if it is referenced by a
reachable object
¤ fields
¤ array elements

23

Mark-and-Sweep

¨ Each object has an extra 1-bit field that is reserved
for garbage collecting use

¨ Garbage Collector (GC) operates in two phases:
¤ mark: GC does a tree traversal of reachable objects

from the stack and sets the GC field
¤ sweep: GC scans all memory from start to finish and

frees all objects that do not have the GC field set

24

Optimized Garbage Collection

¨ Concurrent mark-and-sweep
¨ Generational management
¨ Garbage-First garbage collector

25

Performance
26

Shortcomings of Java

¨ Java has no separation between specification and
implementation

¨ Writing correct concurrent programs in Java is hard
and/or inefficient

¨ People continue to develop new languages (e.g.,
Rust) that address some of these shortcomings
¤ steeper learning curve
¤ longer compile times

27

tl;dr;

¨ Modern compiled, OO languages have similar
performance

¨ Different companies use different languages for
historical, philosophical, or legal reasons

¨ The concepts you learned in this class apply to any
language
¤ abstraction
¤ isolation
¤ inheritance
¤ incremental development & testing

28

Object-Oriented Design

¨ Problem: how to design a large program
¨ Design considerations:

¤ How easy to make changes? (Flexible)
¤ How easy to reuse? (Reusable)
¤ How easy to maintain? (Maintain)

29

Object-Oriented Design

1. What classes do you need?
2. What is the relationship between those classes?
3. What classes should do what?
4. How should objects interact?

30

Example: Dice Game

Application domain: Play a dice game. Players requests to
roll the dice. System presents results: If the dice face values
sum to seven, player wins; otherwise player loses.

31

Example: Dice Game

1. What classes do you
need?

2. What is the
relationship between
those classes?

3. How should objects
interact?

4. What classes should
do what?

32

Player

Die

DiceGame

Die d1;
Die d2;

boolean play()

int faceValue;

void roll()
int getFaceValue()

Plays

Rolls,
Reads val

String name;

Design Patterns

¨ Design patterns are general, re-usable solutions to
commonly recurring problems

¨ OO design patterns typically show relationships
and interactions between classes or objects

¨ Not a magic solution; blindly applying design
patterns can overcomplicate your code

33

Example: MVC

¨ Model-View-Controller is a common pattern for
developing applications with GUIs

34

35

CS2110

¨ Object-oriented programming, reasoning about complex
problems

¨ Testing; Reasoning about correctness

¨ Algorithmic complexity, analyzing algorithms,
¨ Data structures: linked lists, trees, hash tables, graphs, etc.
¨ Programming paradigms: recursion, parallel execution

36

37

