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FIBONACCI NUMBERS
GOLDEN RATIO, 
RECURRENCES

Lecture 25
CS2110 – Spring 2018

Fibonacci
(Leonardo Pisano) 

1170-1240?
Statue in Pisa Italy

Fibonacci function
2

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2)  for n ≥ 2

0, 1, 1, 2, 3, 5, 8, 13, 21, …

In his book in 120
titled Liber Abaci

Has nothing to do with the
famous pianist Liberaci

But sequence described 
much earlier in India:

Virahaṅka  600–800
Gopala before 1135 
Hemacandra about 1150

The so-called Fibonacci 
numbers in ancient and 
medieval India.
Parmanad Singh, 1985
pdf on course website 

Fibonacci function (year 1202)
3

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2)  for n ≥ 2

/** Return fib(n). Precondition: n ≥ 0.*/
public static int f(int n) {

if ( n <= 1) return n;
return f(n-1) + f(n-2);

}

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

We’ll see that this is a 
lousy way to compute 
f(n) 

Golden ratio  Φ = (1 + √5)/2 = 1.61803398…

4

Find the golden ratio when we divide a line into two parts such 
that

whole length / long part   ==  long part / short part

Call long part a and short part b

(a + b) / a  =  a / b Solution is called  Φ 

See webpage:
http://www.mathsisfun.com/numbers/golden-ratio.html

a b

Golden ratio  Φ = (1 + √5)/2 = 1.61803398…

5

Find the golden ratio when we divide a line into two parts a and 
b such that

(a + b) / a  =  a / b            = Φ 

See webpage:
http://www.mathsisfun.com/numbers/golden-ratio.html

a

a b

Golden rectangle

Golden ratio  Φ = (1 + √5)/2 = 1.61803398…

6

Find the golden ratio when we divide a line into two parts a and 
b such that

(a + b) / a  =  a / b            = Φ

For successive Fibonacci numbers a, b , a/b is close to Φ 
but not quite it Φ .  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

a

a b

Golden 
rectangle

a/b
8/5 = 1.6
13/8 =  1.625…
21/13= 1.615…
34/21 = 1.619…
55/34 = 1.617…
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Find fib(n) from fib(n-1) 
7

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Golden ratio and Fibonacci numbers: inextricably linked

Since  fib(n) / fib(n-1) is close to the golden ratio,

You can see that (golden ratio) * fib(n-1) is close to fib(n)

We can actually use this formula to calculate fib(n)
From fib(n-1)

Fibonacci function (year 1202)
8

Downloaded from wikipedia

Fibonacci tiling Fibonacci spiral

0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …

The Parthenon
9

The golden ratio
10

a                          

b

golden rectangle
How to draw a golden rectangle

fibonacci and bees
11

MB                                 1

FB                                 1

FB                       MB                     2

FB             MB                     FB                     3

FB     MB         FB                FB     MB              5

FB    MB     FB       FB   MB      FB  MB    FB         8

MB: male bee,    FB: female bee

Male bee has only a mother
Female bee has mother and father

The number of 
ancestors at any 
level is a 
Fibonnaci 
number

Fibonacci in Pascal’s Triangle
12

p[i][j] is the number of ways i elements  can be chosen from a set of size j

1
1
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1
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1
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Suppose you are a plant
13

You want to grow your leaves so that they all get a good 
amount of sunlight. You decide to grow them at 
successive angles of 180 degrees

Pretty stupid plant!
The two bottom leaves get VERY little sunlight!

Suppose you are a plant
14

You want to grow your leaves so that they all get a good 
amount of sunlight. 90 degrees, maybe?

Where does the 
fifth leaf go?

Fibonacci in nature
15 The artichoke uses the 

Fibonacci pattern to spiral the 
sprouts of its flowers. 

topones.weebly.com/1/post/2012/10/the-artichoke-and-fibonacci.html

The artichoke sprouts its leafs at a constant amount of rotation: 
222.5 degrees (in other words the distance between one leaf and 
the next is 222.5 degrees).

360/(golden ratio) = 222.492

Blooms: strobe-animated sculptures

www.instructables.com/id/Blooming-Zoetrope-Sculptures/

16

Uses of Fibonacci sequence in CS

Fibonacci search

Fibonacci heap data strcture

Fibonacci cubes: graphs used for interconnecting 
parallel and distributed systems

17

Fibonacci search of sorted b[0..n-1]
18

binary search:
cut in half at each step

e1 = (n-0)/2

0                  n__________________e1

0        e1_________e2

e2 = (e1-0)/2

e2   e1_____

0                  144__________________

Fibonnacci search: (n = 144)
cut by Fibonacci numbers

2  3  5  8  13  21  34  55  89  144

e1 = 0 + 89

e1

0          e1___________

e2 = 0 + 55

e2

e2     e1_______
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Fibonacci search history

David Ferguson. Fibonaccian searching. Communications of the 
ACM, 3(12) 1960: 648

Wiki: Fibonacci search divides the array into two parts that have 
sizes that are consecutive Fibonacci numbers. On average, this 
leads to about 4% more comparisons to be executed, but only 
one addition and subtraction is needed to calculate the indices of 
the accessed array elements, while classical binary search needs 
bit-shift, division or multiplication.

19

If the data is stored on a magnetic tape where seek time depends 
on the current head position, a tradeoff between longer seek time 
and more comparisons may lead to a search algorithm that is 
skewed similarly to Fibonacci search.

20

David Ferguson.

Fibonaccian searching.

This flowchart is how 
Ferguson describes the
algorithm in this 1-page
paper. There is some
English verbiage but
no code.

Only high-level language
available at the time: 
Fortran.

Fibonacci search

LOUSY WAY TO COMPUTE: O(2^n)
21

/** Return fib(n). Precondition: n ≥ 0.*/
public static int f(int n) {

if ( n <= 1) return n;
return f(n-1) + f(n-2);

}
20

19 18

18 17 17 16

1516 16151617 15 14

Calculates f(15) 8 times! 
What is complexity of f(n)?

Recursion for fib:  f(n) = f(n-1) + f(n-2)

T(0) = a                  T(n): Time to calculate f(n)
T(1) = a                            Just a recursive function
T(n) = a + T(n-1) + T(n-2)      “recurrence relation”

22

We can prove that T(n) is O(2n)

It’s a “proof by induction”.
Proof by induction is not covered in this course.
But we can give you an idea about why T(n) is O(2n)  

T(n) <= c*2n for n >= N

Recursion for fib:  f(n) = f(n-1) + f(n-2)

T(0) = a                  
T(1) = a                  

T(n) = a + T(n-1) + T(n-2)

23

T(n) <= c*2n for n >= N

T(0) = a  ≤ a * 20

T(1) = a  ≤ a * 21

T(2)
=       <Definition>

a + T(1) + T(0) 
≤       <look to the left>

a  +  a * 21 +  a * 20
=       <arithmetic>

a * (4)

=       <arithmetic>

a * 22   

Recursion for fib:  f(n) = f(n-1) + f(n-2)

T(0) = a                  
T(1) = a                  

T(n) = T(n-1) + T(n-2)

24

T(n) <= c*2n for n >= N

T(0) = a  ≤ a * 20

T(1) = a  ≤ a * 21

T(3)
=       <Definition>

a + T(2) + T(1) 
≤      <look to the left>

a + a * 22 +  a * 21
=       <arithmetic>

a * (7)

≤       <arithmetic>

a * 23   

T(2) = 2a  ≤ a * 22
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Recursion for fib:  f(n) = f(n-1) + f(n-2)

T(0) = a                  
T(1) = a                  

T(n) = T(n-1) + T(n-2)

25

T(n) <= c*2n for n >= N

T(0) = a  ≤ a * 20

T(1) = a  ≤ a * 21

T(4)
=       <Definition>

a + T(3) + T(2) 
≤        <look to the left>

a  +  a * 23 +  a * 22
=       <arithmetic>

a * (13)
≤       <arithmetic>

a * 24   

T(2)  ≤ a * 22

T(3)  ≤ a * 23

Recursion for fib:  f(n) = f(n-1) + f(n-2)

T(0) = a                  
T(1) = a                  

T(n) = T(n-1) + T(n-2)

26

T(n) <= c*2n for n >= N

T(0) = a  ≤ a * 20

T(1) = a  ≤ a * 21

T(5)
=       <Definition>

a + T(4) + T(3) 
≤        <look to the left>

a  +  a * 24 +  a * 23
=       <arithmetic>

a * (25)
≤       <arithmetic>

a * 25   

T(2)  ≤ a * 22

T(3) ≤ a * 23

WE CAN GO ON FOREVER LIKE THIS

T(4) ≤ a * 24

Recursion for fib:  f(n) = f(n-1) + f(n-2)

T(0) = a                  
T(1) = a                  

T(n) = T(n-1) + T(n-2)

27

T(n) <= c*2n for n >= N

T(0) = a  ≤ a * 20

T(1) = a  ≤ a * 21

T(k)
=       <Definition>

a + T(k-1) + T(k-2) 
≤        <look to the left>

a  +  a * 2k-1 +  a * 2k-2
=       <arithmetic>

a * (1 + 2k-1 + 2k-2)
≤       <arithmetic>

a * 2k   

T(2) ≤ a * 22

T(3) ≤ a * 23

T(4) ≤ a * 24

Caching
28

As values of f(n) are calculated, save them in an ArrayList.
Call it a cache.

When asked to calculate f(n) see if it is in the cache.
If yes, just return the cached value.
If no, calculate f(n), add it to the cache, and return it.

Must be done in such a way that if f(n) is about to 
be cached, f(0), f(1), … f(n-1) are already cached.

The golden ratio

a > 0 and b > a > 0 are in the golden ratio if

(a + b) / b  =  b/a     call that value ϕ

ϕ2 = ϕ + 1 so ϕ = (1 + sqrt(5)) /2   =  1.618 …

29

a                          1

b

ratio of sum of sides to longer side

= 

ratio of longer side to shorter side

1.618….

Can prove that Fibonacci recurrence is O(ϕn)

We won’t prove it.
Requires proof by induction

Relies on identity  ϕ2 = ϕ + 1

30
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Linear algorithm to calculate fib(n)

/** Return fib(n), for n >= 0. */
public static int f(int n) {

if (n <= 1) return 1;
int p= 0;   int c= 1;  int i= 2;
// invariant: p = fib(i-2) and c = fib(i-1)

while (i < n) {
int fibi= c + p;   p= c;  c= fibi;
i= i+1;

} 
return c + p;

}

31

Logarithmic algorithm!

f0 = 0 
f1 = 1                                                

fn+2 = fn+1 + fn    

32

0  1
1  1

fn
fn+1 

fn+1
fn+2

=

0  1
1  1

0  1
1  1

fn
fn+1 

fn+1
fn+2

=
0  1
1  1 =

fn+2

fn+3 

0  1
1  1

k
fn
fn+1 

=
fn+k
fn+k+1

Logarithmic algorithm!

f0 = 0 
f1 = 1                                                

fn+2 = fn+1 + fn    

33

0  1
1  1

k
fn
fn+1 

=
fn+k
fn+k+1

0  1
1  1

k
f0
f1 

=
fk
fk+1

You know a logarithmic 
algorithm for exponentiation 
—recursive and iterative 
versions

Gries and Levin
Computing a Fibonacci 
number in log time.
IPL 2  (October 1980), 68-69.

Another log algorithm!

Define   φ = (1 + √5) / 2            φ’ = (1 - √5) / 2 

The golden ratio again.

Prove by induction on n that

fn   =    (φn - φ’n) / √5

34


