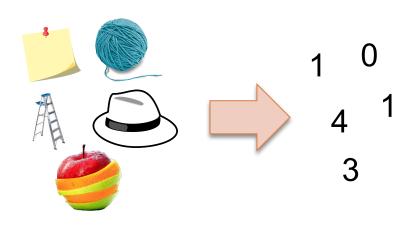


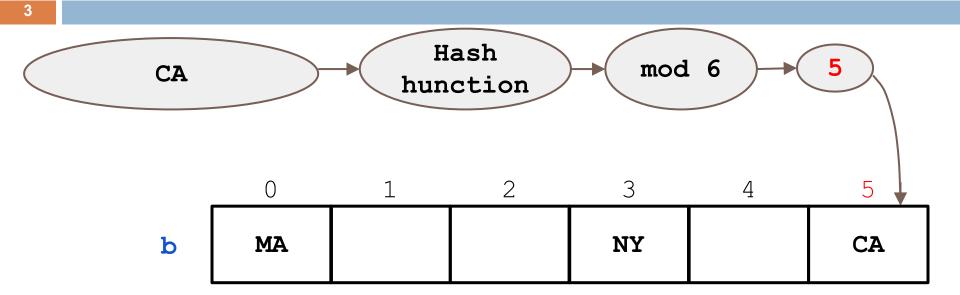
HASHING II

Hash Functions



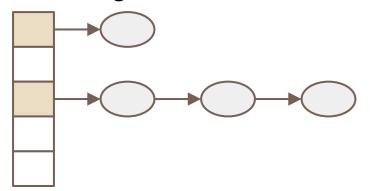
- □ Requirements:
 -) deterministic
 - 2) return a number in [0..n]
- Properties of a good hash:
 - 1) fast
 - 2) collision-resistant
 - 3) evenly distributed
 - 4) hard to invert

add("CA")

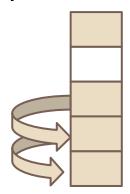


Two ways of handling collisions:

1. Chaining



2. Open Addressing



HashSet and HashMap

```
Set<V>{
  boolean add(V value);
  boolean contains(V value);
  boolean remove(V value);
```

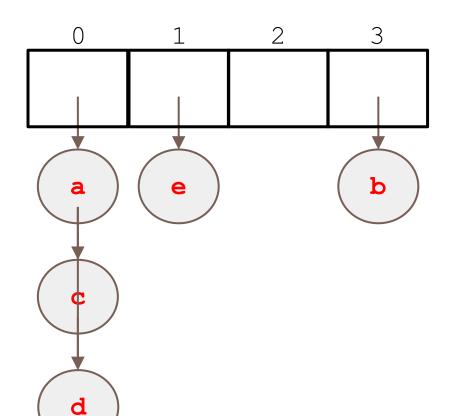
```
Map<K,V>{
  V put(K key, V value);
 V get(K key);
 V remove(K key);
```

Remove

Chaining

Open Addressing

put('a')
put('b')
put('c')
put('d')
get('d')
remove('c')
get('d')
put('e')



0	<u> </u>	b
a	u	D

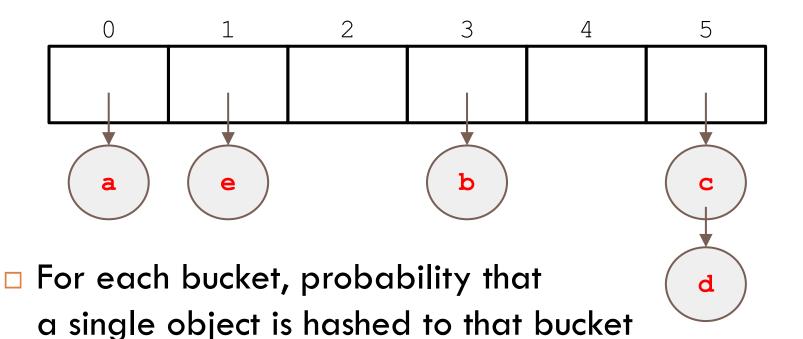
Time Complexity (no resizing)

Collision Handling	put(v)	get(v)	remove(v)
Chaining	0(1)	O(n)	O(n)
Open Addressing	O(n)	O(n)	O(n)

Load Factor

Load factor
$$\lambda = \frac{\# of \ entries}{length \ of \ array}$$

Expected Chain Length



□ There are n objects in the hash table

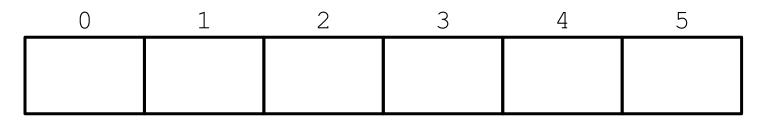
is 1/length of array

 \square Expected length of chain is n/length of array = λ

Expected Time Complexity (no resizing)

Collision Handling	put(v)	get(v)	remove(v)
Chaining	0(1)	$O(1 + \lambda)$	$O(1+\lambda)$
Open Addressing			

Expected Number of Probes



- We always have to probe H(v)
- \square With probability λ , first location is full, have to probe again
- \square With probability $\lambda \cdot \lambda$, second location is also full, have to probe yet again
- □ ...
- □ Expected #probes = $1 + \lambda + \lambda^2 + ... = \frac{1}{1-\lambda}$

Expected Time Complexity (no resizing)

Collision Handling	put(v)	get(v)	remove(v)
Chaining	0(1)	0(1)	0(1)
Open Addressing	0(1)	0(1)	0(1)

Assuming constant load factor
We need to dynamically resize!

Amortized Analysis

VS.

In an amortized analysis, the time required to perform a sequence of operations is averaged over all the operations

Can be used to calculate
 average cost of operation

Amortized Analysis of put

- □ Assume dynamic resizing with load factor $\lambda = \frac{1}{2}$:
 - $lue{}$ Most put operations take (expected) time O(1)
 - \square If $i=2^j$, put takes time O(i)
 - Total time to perform n put operations is $n \cdot O(1) + O(2^0 + 2^1 + 2^2 + ... + 2^j)$
 - Average time to perform 1 put operation is

$$O(1) + O\left(\frac{1}{2^{j}} + \frac{1}{2^{j-1}} + \dots + \frac{1}{4} + \frac{1}{2} + 1\right) = O(1)$$

Expected Time Complexity (with dynamic resizing)

Collision Handling	put(v)	get(v)	remove(v)
Chaining	0(1)	0(1)	0(1)
Open Addressing	0(1)	0(1)	0(1)

Cuckoo Hashing

Cuckoo Hashing

- Alternative solution to collisions
- Assume you have two hash functions H1 and H2

element	а	b	С	d	е
H1	0	9	17	11	5
H2	5	2	10	3	13

0	1	2	3	4	5
а		b	A	С	e

What if there are loops?

Complexity of Cuckoo Hashing

■ Worst Case:

Collision Handling	put(v)	get(v)	remove(v)
Chaining	0(1)	O(n)	O(n)
Open Addressing	O(n)	O(n)	O(n)
Cuckoo Hashing	∞	0(1)	0(1)

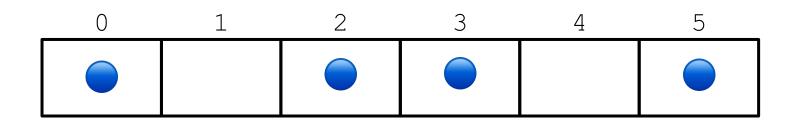
Expected Case:

Collision Handling	put(v)	get(v)	remove(v)
Chaining	0(1)	0(1)	0(1)
Open Addressing	0(1)	0(1)	0(1)
Cuckoo Hashing	0(1)	0(1)	0(1)

Bloom Filters

- Assume we only want to implement a set
- What if you had stored the value at "all" hash locations (instead of one)?

element	а	b	С	d	е
H1	0	9	17	11	5
H2	5	2	10	3	13



Features of Bloom Filters

- \square Worst-case O(1) put, get, and remove
- Works well with higher load factors
- But: false positives