

About A6, Prelim 2

A6 is due tomorrow (Friday) night.

The deadline for late submission: Sunday.

Gries will be in his office today, Thursday, from 1 to 3PM to offer help on A6.

Prelim 2: Tuesday, 24 April.

Please visit exams page of course website and read carefully to find out when you take it (5:30 or 7:30) and what to do if you have a conflict.

Time assignments are different from Prelim 1!

Undirected trees

An undirected graph is a *tree* if there is exactly one simple path between any pair of vertices

What's the root? It doesn't matter! Any vertex can be root.



Facts about trees

- #E = #V 1
- connected
- no cycles

√

Tree with #V = 1, #E = 0

Tree with #V = 3, #E = 2

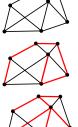
Any two of these properties imply the third and thus imply that the graph is a tree

Spanning trees

A spanning tree of a connected undirected graph (V,E) is a subgraph (V,E') that is a tree

- Same set of vertices V
- E' ⊆ E
- (V, E') is a tree
- Same set of vertices V
- Maximal set of edges that contains no cycle
- Same set of vertices V
- Minimal set of edges that connect all vertices

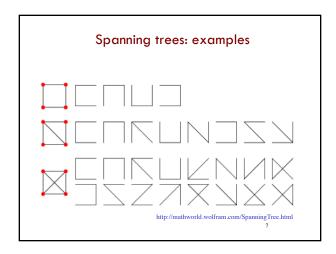
Three equivalent definitions

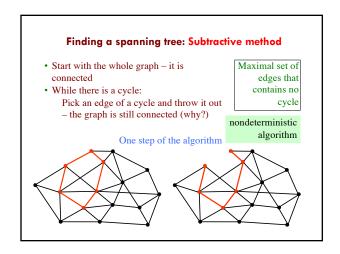


Facts about trees

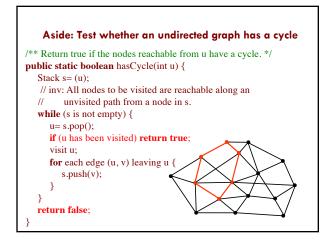
- #E = #V 1
- connected
- no cycles

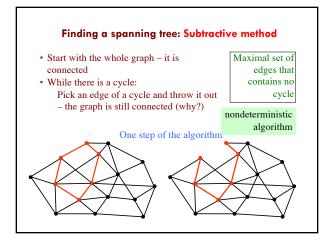
Any two of these properties imply the third and thus imply that the graph is a tree

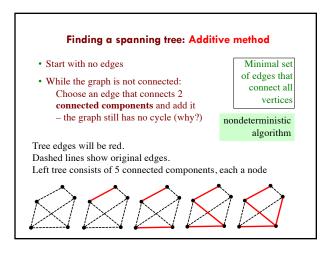




Aside: Test whether an undirected graph has a cycle /** Visit all nodes reachable along unvisited paths from u. * Pre: u is unvisited. */ public static void dfs(int u) { Stack s= (u); // inv: All nodes to be visited are reachable along an // unvisited path from a node in s. while (s is not empty) { u= s.pop(); if (u has not been visited) { visit u; for each edge (u, v) leaving u: s.push(v); } }







Minimum spanning trees

- Suppose edges are weighted (> 0)
- We want a spanning tree of *minimum cost* (sum of edge weights)
- Some graphs have exactly one minimum spanning tree. Others have several trees with the same minimum cost, each of which is a minimum spanning tree
- Useful in network routing & other applications. For example, to stream a video

Greedy algorithm

A greedy algorithm follows the heuristic of making a locally optimal choice at each stage, with the hope of finding a global optimum.

Example. Make change using the fewest number of coins. Make change for n cents, n < 100 (i.e. < \$1) Greedy: At each step, choose the largest possible coin

If $n \ge 50$ choose a half dollar and reduce n by 50; If $n \ge 25$ choose a quarter and reduce n by 25; As long as $n \ge 10$, choose a dime and reduce n by 10;

If $n \ge 5$, choose a nickel and reduce n by 5;

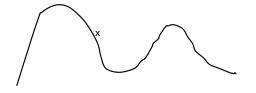
Choose n pennies.

14

Greediness work here

You're standing at point x. Your goal is to climb the highest mountain.

Two possible steps: down the hill or up the hill. The greedy step is to walk up hill. That is a local optimum choice, not a global one. Greediness works in this case.



Greediness doesn't work here

You're standing at point x, and your goal is to climb the highest mountain.

Two possible steps: down the hill or up the hill. The greedy step is to walk up hill. But that is a local optimum choice, not a global one. Greediness fails in this case.

Greedy algorithm —doesn't always work!

A greedy algorithm follows the heuristic of making a locally optimal choice at each stage, with the hope of finding a global optimum. Doesn't always work

Example. Make change using the fewest number of coins. Coins have these values: 7, 5, 1 Greedy: At each step, choose the largest possible coin

Consider making change for 10. The greedy choice would choose: 7, 1, 1, 1. But 5, 5 is only 2 coins.

17

Finding a minimal spanning tree

Suppose edges have > 0 weights

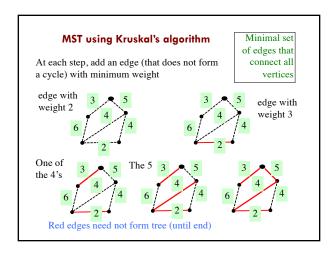
Minimal spanning tree: sum of weights is a minimum

We show two greedy algorithms for finding a minimal spanning tree. They are abstract, at a high level.

They are versions of the basic additive method we have already seen: at each step add an edge that does not create a cycle.

Kruskal: add an edge with minimum weight. Can have a forest

Prim (JPD): add an edge with minimum weight but so that the added edges (and the nodes at their ends) form *one* tree



Kruskal

Start with the all the nodes and no edges, so there is a forest of trees, each of which is a single node (a leaf). Minimal set of edges that connect all vertices

At each step, add an edge (that does not form a cycle) with minimum weight

We do not look more closely at how best to implement Kruskal's algorithm —which data structures can be used to get a really efficient algorithm.

Leave that for later courses, or you can look them up online vourself.

We now investigate Prim's algorithm

MST using "Prim's algorithm" (should be called "JPD algorithm")

Developed in 1930 by Czech mathematician **Vojtěch Jarník**. Práce Moravské Přírodovědecké Společnosti, 6, 1930, pp. 57–63. (in Czech)

Developed in 1957 by computer scientist **Robert C. Prim**. *Bell System Technical Journal*, 36 (1957), pp. 1389–1401

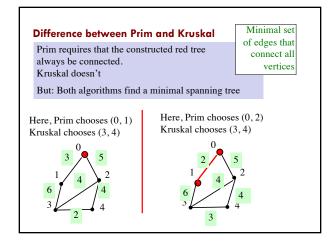
Developed about 1956 by **Edsger Dijkstra** and published in in 1959. *Numerische Mathematik* 1, 269–271 (1959)

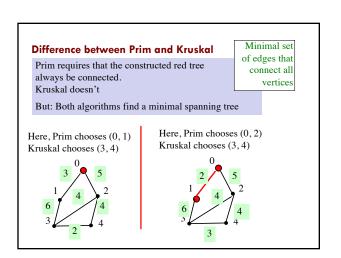
Help:IPA for Czech

From Wikipedia, the free encyclopedia

 $\textbf{Vojtěch Jarník} \ (\textbf{Czech pronunciation: ['vojcex 'jarni:k]};$

Prim's algorithm At each step, add an edge (that does not form a cycle) with minimum weight, but keep added edge connected to the start (red) node edge with weight 3 5 6 2 The 2 3 5 6 2 4 6 2 4 6 2 4 Minimal set of edges that connect all vertices edge with weight 5





Difference between Prim and Kruskal

Prim requires that the constructed red tree always be connected.

Kruskal doesn't

Minimal set of edges that connect all vertices

But: Both algorithms find a minimal spanning tree

If the edge weights are all different, the Prim and Kruskal algorithms construct the same tree.

Prim's (JPD) spanning tree algorithm

```
Given: graph (V, E) (sets of vertices and edges)

Output: tree (V1, E1), where

V1 = V

E1 is a subset of E

(V1, E1) is a minimal spanning tree –sum of edge weights is minimal
```


26

Prim's (JPD) spanning tree algorithm

```
 \begin{array}{l} \textbf{V1} = \{\text{an arbitrary node of V}\}; \quad \textbf{E1} = \{\}; \\ \text{//inv: } (\textbf{V1}, \textbf{E1}) \text{ is a tree, } \textbf{V1} \leq \textbf{V}, \textbf{E1} \leq \textbf{E} \\ \\ \textbf{while } (\textbf{V1}.\text{size()} < \textbf{V}.\text{size()}) \{ \\ \text{Pick an edge } (\textbf{u}, \textbf{v}) \text{ with:} \\ \text{min weight, u in V1,} \\ \text{v not in V1;} \\ \text{Add v to V1;} \\ \text{Add edge } (\textbf{u}, \textbf{v}) \text{ to E1} \\ \\ \textbf{Add edge } (\textbf{u}, \textbf{v}) \text{ to E1} \\ \\ \textbf{S: 2 edges leaving red nodes} \\ \end{array}
```

Consider having a set S of edges with the property: If (u,v) an edge with u in V1 and v not in V1, then (u,v) is in S

Prim's (JPD) spanning tree algorithm

```
 \begin{array}{l} \textbf{V1} = \{ \text{an arbitrary node of V} \}; \quad \textbf{E1} = \; \{ \}; \\ \text{//inv: } (V1, E1) \text{ is a tree, } V1 \leq V, E1 \leq E \\ \\ \textbf{while } (\textbf{V1}.\text{size}() < \textbf{V}.\text{size}()) \; \{ \\ \text{Pick an edge } (\textbf{u}, \textbf{v}) \text{ with:} \\ \text{min weight, } \textbf{u in V1}, \\ \text{v not in V1}; \\ \text{Add v to V1}; \\ \text{Add edge } (\textbf{u}, \textbf{v}) \text{ to E1} \\ \text{Add edge } (\textbf{u}, \textbf{v}) \text{ to E1} \\ \\ \} \\ \\ & \text{S: 3 edges leaving red nodes} \\ \end{array}
```

Consider having a set S of edges with the property: If (u, v) an edge with u in V1 and v not in V1, then (u, v) is in S

Prim's (JPD) spanning tree algorithm

```
V1= {an arbitrary node of V}; E1= {};
//inv: (V1, E1) is a tree, V1 ≤ V, E1 ≤ E

while (V1.size() < V.size()) {
    Pick an edge (u,v) with:
    min weight, u in V1,
    v not in V1;
    Add v to V1;
    Add edge (u, v) to E1
}

Note: the edge with weight 6 is
    not in in S − this avoids cycles

Consider having a set S of edges with the property:
```

If (u, v) an edge with u in V1 and v not in V1, then (u, v) is in S

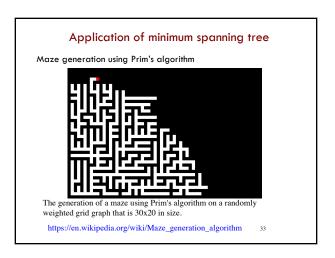
Prim's (JPD) spanning tree algorithm

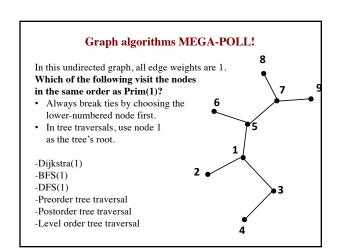
```
 \begin{array}{l} \textbf{V1} = \{\text{an arbitrary node of V}\}; \quad E1 = \{\}; \\ \text{//inv: } (V1, E1) \text{ is a tree, } V1 \leq V, E1 \leq E \\ \text{S= set of edges leaving the single node in V1;} \\ \textbf{while } (\textbf{V1}.\text{size}() < V.\text{size}()) \{ \\ \text{Pick-an-edge } (\textbf{u}, \textbf{v}) \text{ with:} \\ -\text{min-weight, u-in-V1,-} \\ -\text{v-not in-V1;} \\ \text{Add-v-to-V1;----} \\ \text{Add-edge } (\textbf{u}, \textbf{v}) \text{-to-E1-} \\ \text{Add-edge } \{\textbf{u}, \textbf{v}\} \text{-to-E1-} \\ \} \end{array}   \begin{array}{l} \text{Remove from S an edge} \\ (\textbf{u}, \textbf{v}) \text{ with min weight} \\ \text{if } \textbf{v} \text{ is not in V1:} \\ \text{add } \textbf{v} \text{ to V1; add } (\textbf{u}, \textbf{v}) \text{ to E1;} \\ \text{add edges leaving } \textbf{v} \text{ to S} \\ \end{array}
```

Consider having a set S of edges with the property: If (u, v) an edge with u in V1 and v not in V1, then (u, v) is in S

Prim's (JPD) spanning tree algorithm $\begin{array}{l} \textbf{V1=} \{ \text{start node} \}; \ \textbf{E1=} \{ \}; \\ \textbf{S=} \text{ set of edges leaving the single node in } \textbf{V1}; \\ \text{//inv:} (V1, E1) \text{ is a tree, } V1 \leq V, E1 \leq E, \\ \text{//} \quad \text{All edges } (u, v) \text{ in } S \text{ have } u \text{ in } V1, \\ \text{//} \quad \text{if edge } (u, v) \text{ has } u \text{ in } V1 \text{ and } v \text{ not in } V1, (u, v) \text{ is in } S \\ \textbf{while } (\textbf{V1.size}() < V.size()) \{ \\ \text{Remove from } S \text{ an edge } (u, v) \text{ with min weight;} \\ \text{if } (v \text{ not in } \textbf{V1}) \{ \\ \text{add } v \text{ to } \textbf{V1}; \text{ add } (u, v) \text{ to } \textbf{E1}; \\ \text{add edges leaving } v \text{ to } S \\ \} \\ \\ \end{array} \right. \\ \begin{array}{l} \text{Question: How should} \\ \text{we implement set } S? \\ \end{array}$

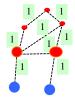
```
Prim's (JPD) spanning tree algorithm
V1 = \{ \text{start node} \}; E1 = \{ \};
S= set of edges leaving the single node in V1;
//inv: (V1, E1) is a tree, V1 \le V, E1 \le E,
      All edges (u, v) in S have u in V1,
       if edge (u, v) has u in V1 and v not in V1, (u, v) is in S
while (V1.size() < V.size()) {
   Remove from S a min-weight edge (u, v);
                                                  #V log #E
   if (v not in V1) {
       add v to V1; add (u,v) to E1;
       add edges leaving v to S
                                                  #E log #E
                                 Thought: Could we use for S a
Implement S as a heap.
                                  set of nodes instead of edges?
 Use adjacency lists for edges
                                 Yes. We don't go into that here
```





Greedy algorithms

Suppose the weights are all 1. Then Dijkstra's shortest-path algorithm does a breath-first search!



Dijkstra's and Prim's algorithms look similar.

The steps taken are similar, but at each step

- •Dijkstra's chooses an edge whose end node has a minimum path length from start node
- •Prim's chooses an edge with minimum length

$Breadth-first\ search, Shortest-path, Prim$

Greedy algorithm: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.

Dijkstra's shortest-path algorithm makes a locally optimal choice: choosing the node in the Frontier with minimum L value and moving it to the Settled set. And, it is proven that it is not just a hope but a fact that it leads to the global optimum.

Similarly, Prim's and Kruskal's locally optimum choices of adding a minimum-weight edge have been proven to yield the global optimum: a minimum spanning tree.

BUT: Greediness does not always work!

Similar code structures

while (a vertex is unmarked) {
 v= best unmarked vertex
 mark v;
 for (each w adj to v)
 update D[w];

v→w edge weight

c(v,w) is the

- Breadth-first-search (bfs)
- -best: next in queue
- -update: D[w] = D[v]+1
- Dijkstra's algorithm
- -best: next in priority queue
 -update: D[w] = min(D[w],
 D[v]+c(v,w))
- Prim's algorithm
- -best: next in priority queue
- -update: D[w] = min(D[w], c(v,w))

Traveling salesman problem

Given a list of cities and the distances between each pair, what is the shortest route that visits each city exactly once and returns to the origin city?

- The true TSP is very hard (called NP complete)... for this
 we want the <u>perfect</u> answer in all cases.
- Most TSP algorithms start with a spanning tree, then "evolve" it into a TSP solution. Wikipedia has a lot of information about packages you can download...

But really, how hard can it be?

How many paths can there be that visit all of 50 cities? 12,413,915,592,536,072,670,862,289,047,373,375,038,521,486,35 4,677,760,000,000,000

Graph Algorithms

- Search
 - Depth-first search
 - Breadth-first search
- Shortest paths
 - Dijkstra's algorithm
- Minimum spanning trees
 - Prim's algorithm
 - Kruskal's algorithm