SHORTEST PATH ALGORITHM

Dijkstra’s shortest-path algorithm

Edsger Dijkstra, in an interview in 2010 (CACM):
... the algorithm for the shortest path, which I designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiance, and tired, we sat down on the cafe terrace to drink a cup of coffee, and I was just thinking about whether I could do this, and then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. [Took place in 1956]

Visit http://www.dijkstracy.com for all sorts of information on Dijkstra and his contributions. As a historical record, this is a gold mine.

1968 NATO Conference on Software Engineering

- In Garmisch, Germany
- Academicians and industry people attended
- For first time, people admitted they did not know what they were doing when developing/testing software. Concepts, methodologies, tools were inadequate, missing
- The term software engineering was born at this conference.
- The NATO Software Engineering Conferences: http://homepages.ccs.dur.ac.uk/~brian.randell/NATO/index.html
Get a good sense of the times by reading these reports!

A7. Implement shortest-path algorithm

Last semester: mean time: 3.7 hrs, median time: 4.0 hrs.
We give you complete set of test cases and a GUI to play with.
Efficiency and simplicity of code will be graded.
Read pinned Assignment A7 note carefully:
2. Important! Grading guidelines.
We demo it.

A6 due Thursday FRIDAY. Late deadline still Sunday
Working with a partner? Group before submitting!!

We will talk about prelim 2 (24 April) on Thursday.
1968 NATO Conference on Software Engineering, Garmisch, Germany

10/04/2018

Dijkstra’s shortest path algorithm

The n (> 0) nodes of a graph numbered 0..n-1.
Each edge has a positive weight.
wgt(v1, v2) is the weight of the edge from node v1 to v2.
Some node v be selected as the start node.
Calculate length of shortest path from v to each node.
Use an array d[0..n-1]: for each node w, store in d[w] the length of the shortest path from v to w.

\[
d[0] = 2 \\
d[1] = 5 \\
d[2] = 6 \\
d[3] = 7 \\
d[4] = 0
\]

Frontier F

Settled S

Far off

The loop invariant

1. For a Settled node s, a shortest path from v to s contains only settled nodes and d[s] is length of shortest v \rightarrow s path.
2. For a Frontier node f, at least one v \rightarrow f path contains only settled nodes (except perhaps for f) and d[f] is the length of the shortest such path.
3. All edges leaving S go to F.

Theorem about the invariant

1. For a Settled node s, d[s] is length of shortest v \rightarrow s path.
2. For a Frontier node f, d[f] is length of shortest v \rightarrow f path using only Settled nodes (except for f).
3. All edges leaving S go to F.

Theorem. For a node f in F with minimum d value (over nodes in F), d[f] is the length of a shortest path from v to f.

Case 1: v is in S.
Case 2: v is in F. Note that d[v] is 0; it has minimum d value.

What does the theorem tell us about this frontier set?

(Cortland, 20 miles) (Dryden, 11 miles)
(Enfield, 10 miles) (Tburg, 15 miles)

Answer: The shortest path from the start node to Enfield has length 10 miles.

Note: the following answer is incorrect because we haven’t said a word about the algorithm! We are just investigating properties of the invariant:

Enfield can be moved to the settled set.
1. For \(s \), \(d[s] \) is length of shortest \(v \rightarrow s \) path.
2. For \(f \), \(d[f] \) is length of shortest \(v \rightarrow f \) path using red nodes (except for \(f \)).
3. Edges leaving \(S \) go to \(F \).

Theorem: For a node \(f \) in \(F \) with min \(d \) value, \(d[f] \) is shortest path length.

Loopy question 1: How does the loop start? What is done to truthify the invariant?

Loopy question 2: When does loop stop? When is array \(d \) completely calculated?

Algorithm

\[
S = \{ \}; \quad F = \{ v \}; \quad d[v] = 0; \\
while (F \neq \{ \})
\{
 f = \text{node in } F \text{ with min } d \text{ value; Remove } f \text{ from } F, \text{ add it to } S; \\
 \text{for each neighbor } w \text{ of } f
 \{
 \text{if } (w \text{ not in } S \text{ or } F)
 \{
 d[w] = d[f] + \text{wgt}(f, w); \\
 \text{add } w \text{ to } F; \\
 \} \text{ else }
 \{
 \text{if } (d[f] + \text{wgt}(f, w) < d[w])
 \{
 d[w] = d[f] + \text{wgt}(f, w); \\
 \}
 \}
 \}
}\]

Loopy question 3: Progress toward termination?

Loopy question 4: Maintain invariant?

Algorithm is finished!

\(F \neq \{ \} \)
Extend algorithm to include the shortest path

Let's extend the algorithm to calculate not only the length of the shortest path but the path itself.

\[
d[0] = 2 \\
d[1] = 5 \\
d[2] = 6 \\
d[3] = 7 \\
d[4] = 0
\]

For each node, maintain the backpointer on the shortest path to that node.

Shortest path to 0 is \(v \rightarrow 0\). Node 0 backpointer is 4.
Shortest path to 1 is \(v \rightarrow 0 \rightarrow 1\). Node 1 backpointer is 0.
Shortest path to 2 is \(v \rightarrow 0 \rightarrow 2\). Node 2 backpointer is 0.
Shortest path to 3 is \(v \rightarrow 0 \rightarrow 2 \rightarrow 1\). Node 3 backpointer is 2.

\(b[k][w]\) is \(w\)'s backpointer
\[
\begin{align*}
b[0] & = 2 & b[0][0] & = 4 \\
b[1] & = 5 & b[1][1] & = 0 \\
b[4] & = 0 & b[4][4] & = \text{none}
\end{align*}
\]

This is our final high-level algorithm. These issues and questions remain:

1. How do we implement \(F\)?
2. The nodes of the graph will be objects of class Node, not ints. How will we maintain the data in arrays \(d\) and \(b[k]\)?
3. How do we tell quickly whether \(w\) is in \(S\) or \(F\)?
4. How do we analyze execution time of the algorithm?

S F Far off
\[
\begin{align*}
S & = \{ \} ; F & = \{v\} ; d[v] & = 0 \\
while & (F \neq \{\}) \{ \\
f & = \text{node in } F \text{ with min } d \text{ value; Remove } f \text{ from } F, \text{ add it to } S; \\
for & \text{ each neighbor } w \text{ of } f \{ \\
& \text{if } (w \text{ not in } S \text{ or } F) \{ \\
& \text{d[w] = d[f] + wgt(f, w); add } w \text{ to } F; b[k][w] = f; \\
& \text{else if } (d[f] + wgt(f, w) < d[w]) \{ \\
& \text{d[w] = d[f] + wgt(f, w); } \\
& b[k][w] = f; \\
& \}
& \}
\}
\}
\]

Use a min-heap, with the priorities being the distances!

Distances ---priorities--- will change. That's why we need updatePriority in Heap.java
S F Far off
S= { }; F= {v}; d[v]=0;
while (F ≠ {}) {
 f= node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w]= d[f] + wgt(f, w);
 add w to F; bk[w]= f;
 } else if (d[f]+wgt(f, w) < d[w]) {
 d[w]= d[f] + wgt(f, w);
 bk[w]= f;
 }
 }
}
For what nodes do we need a distance and a backpointer?

S F Far off
S= { }; F= {v}; d[v]=0;
while (F ≠ {}) {
 f= node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w]= d[f] + wgt(f, w);
 add w to F; bk[w]= f;
 } else if (d[f]+wgt(f, w) < d[w]) {
 d[w]= d[f] + wgt(f, w);
 bk[w]= f;
 }
 }
}
For every node in S or F we need both its d-value and its backpointer (null for v)

F implemented as a heap of Nodes. What data structure do we use to maintain an SF object for each node in S and F?

S F Far off
S= { }; F= {v}; d[v]=0;
while (F ≠ {}) {
 f= node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w]= d[f] + wgt(f, w);
 add w to F; bk[w]= f;
 } else if (d[f]+wgt(f, w) < d[w]) {
 d[w]= d[f] + wgt(f, w);
 bk[w]= f;
 }
 }
}
For every node in S or F we need both its d-value and its backpointer (null for v)

public class SF {
 private int distance;
 private node backPtr;
 ...
}

F implemented as a min-heap: data replaces S, d, b

public class SFinfo {
 private int distance;
 private node backPtr;
}

Assume: n nodes reachable from v e edges leaving those n nodes

Investigate execution time. Important: understand algorithm well enough to easily determine the total number of times each part is executed/evaluated
while node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
}
}

HashMap<Node, SF> data

public class SF {

 private Node backPtr;
 private int distance;

 public SF(Node v) {
 d[v] = 0;
 S = new HashSet<Node>();
 F = new HashSet<Node>();
 }

 public SF(Node v, HashMap<Node, SF> data) {
 d[v] = 0;
 S = new HashSet<Node>();
 F = new HashSet<Node>();
 }

 public void add(Node v) {
 F.add(v);
 d[v] = 0;
 S.add(v);
 }

 public void remove(Node v) {
 F.remove(v);
 S.remove(v);
 }

 public int getDistance(Node v) {
 return d[v];
 }

 public Node getBackPtr(Node v) {
 return bk[v];
 }

 public void reset() {
 S.clear();
 F.clear();
 d.clear();
 bk.clear();
 }

}

Directed graph
n nodes reachable from v
e edges leaving the n nodes

while node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
}
}

HashMap<Node, SF> data

public class SF {

 private Node backPtr;
 private int distance;

 public SF(Node v) {
 d[v] = 0;
 S = new HashSet<Node>();
 F = new HashSet<Node>();
 }

 public SF(Node v, HashMap<Node, SF> data) {
 d[v] = 0;
 S = new HashSet<Node>();
 F = new HashSet<Node>();
 }

 public void add(Node v) {
 F.add(v);
 d[v] = 0;
 S.add(v);
 }

 public void remove(Node v) {
 F.remove(v);
 S.remove(v);
 }

 public int getDistance(Node v) {
 return d[v];
 }

 public Node getBackPtr(Node v) {
 return bk[v];
 }

 public void reset() {
 S.clear();
 F.clear();
 d.clear();
 bk.clear();
 }

}

Directed graph
n nodes reachable from v
e edges leaving the n nodes

while node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
}
}

HashMap<Node, SF> data

public class SF {

 private Node backPtr;
 private int distance;

 public SF(Node v) {
 d[v] = 0;
 S = new HashSet<Node>();
 F = new HashSet<Node>();
 }

 public SF(Node v, HashMap<Node, SF> data) {
 d[v] = 0;
 S = new HashSet<Node>();
 F = new HashSet<Node>();
 }

 public void add(Node v) {
 F.add(v);
 d[v] = 0;
 S.add(v);
 }

 public void remove(Node v) {
 F.remove(v);
 S.remove(v);
 }

 public int getDistance(Node v) {
 return d[v];
 }

 public Node getBackPtr(Node v) {
 return bk[v];
 }

 public void reset() {
 S.clear();
 F.clear();
 d.clear();
 bk.clear();
 }

}

Directed graph
n nodes reachable from v
e edges leaving the n nodes

while node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
}
}

HashMap<Node, SF> data

public class SF {

 private Node backPtr;
 private int distance;

 public SF(Node v) {
 d[v] = 0;
 S = new HashSet<Node>();
 F = new HashSet<Node>();
 }

 public SF(Node v, HashMap<Node, SF> data) {
 d[v] = 0;
 S = new HashSet<Node>();
 F = new HashSet<Node>();
 }

 public void add(Node v) {
 F.add(v);
 d[v] = 0;
 S.add(v);
 }

 public void remove(Node v) {
 F.remove(v);
 S.remove(v);
 }

 public int getDistance(Node v) {
 return d[v];
 }

 public Node getBackPtr(Node v) {
 return bk[v];
 }

 public void reset() {
 S.clear();
 F.clear();
 d.clear();
 bk.clear();
 }

}
while (F ≠ { }) {
 f= node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w]= f;
 } else if (d[f]+wgt (f,w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w]= f;
 }
 }
}

Directed graph
n nodes reachable from v
e edges leaving the n nodes
Expected-case analysis

1 x O(1) 1
O(n) 2
O(n) 3
O(n log n) 4
O(e) 5
O(e) 6
O(n) 7
O(n log n) 8
O((e–n) log n). 9
O(e–n) 10

Dense graph, so e close to n^2: Line 10 gives O(n^2 log n)

Sparse graph, so e close to n: Line 4 gives O(n log n)