GRAPH SEARCH

Announcements

A5 due tonight
Aé is out, remember to get started early

For the next lecture, you MUST watch the tutorial on
the shortest path algorithm beforehand:

The class on 4/10 will assume that you understand
it. Watch the tutorial once or twice and execute the
algorithm on a small graph.

Complete Quiz 4 by 4/9

Representing Graphs

4,
Adjacency List

1 g2 pmd
2 g3

OE—E5—EN

= Wb =

2
3
Adjacency Matrix

1 2 3 4
0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

Graph Algorithms
I

1 Search

o Depth-first search
o Breadth-first search

o1 Shortest paths
o Dijkstra's algorithm
0 Spanning trees
Algorithms based on properties
Minimum spanning trees
o Prim's algorithm
o1 Kruskal's algorithm

Search on Graphs

| 6
-1 Given a graph (V, E)
and a vertex u €V

7 We want to "visit"
each node that is
reachable from u

There are many paths to

some nodes.

How do we visit all nodes
efficiently, without doing
extra work?

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along
unvisited paths.

/** Visit all nodes reachable
on unvisited paths from u.
Precondition: u 1s unvisited.

*/
public static void dfs (int u)

{

visit (u) ;
for all edges (u,v):
1f(!visited[V]) :

dts (v); dfs(1) visits the nodes in this
} order: 1,2, 3,5,7, 8

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along
unvisited paths.

/** Visit all nodes reachable
on unvisited paths from u.
Precondition: u 1s unvisited.

*/
public static void dfs (int u)

{
Suppose there are n vertices that

are reachable along unvisited paths
and m edges:

visit (u) ;
for all edges (u,v):
1f(!visited(v)) :

dts (v); Worst-case running time? O(n + m)

} Worst-case space? 0(n)

DFS Quiz

In what order would o
DFS visit the vertices of
this graph? Break ties by
visiting the lower-
numbered vertex first.
1,2,3,4,5,6,7,8
1,2,5,6,3,6,7,4,7,8
1,2,5,3,6,4,7,8
1,2,56,3,7,4,8

Depth-First Search in Java

|10
public class Node ({ Each vertex of the
boolean visited; graph is an object
List<Node> neighbors; offypetqode

/** Visit all nodes reachable on unvisited paths from
this node.

Precondition: this node 1s unvisited.

public void dfs () { «

No need for a

parameter. The

visited= true; object is the node.

for (Node n: neighbors) {
i1f (!'n.visited) n.dfs();

Depth-First Search Iteratively

Intuition: Visit all vertices that are reachable along unvisited paths
from the current node.

/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void dfs (int u) {
Stack s= (u);// Not Java!
while (s is not empty) {

u= s.pop();
if (u not wvisited) {
visit u;

for each edge (u, v):
s.push (v);

¥
Stack: K

8
5

Breadth-First Search

Intuition: lteratively process the graph in "layers" moving further

away from the source node.

/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static wvoid bfs(int u) {
Queue g= (u);// Not Java!
while (g 1s not empty) {
u= g.remove () ;
if (u not wvisited) {

visit u;
for each (u, v):
g.add (v) ;

¥
J @Il:\IH 2 5 7 3 5 8 5

Analyzing BFS

Intuition: lteratively process the graph in "layers" moving further
away from the source node.

/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs(int u) {
Queue g= (u);// Not Java!
while () |
U= 4. remove ,(> Suppose there are n vertices that
if (u not visited) { .
visit u; are reachable along unvisited paths
for each (u, v): and m edges:
g.add (v) ;
} Worst-case running time? O (n + m)

} Worst-case space? 0(m)

BFS Quiz

In what order would o
BFS visit the vertices of
this graph? Break ties by
visiting the lower-
numbered vertex first.
1,2,3,4,5,6,7,8
1,2,3,4,5,6,6,7,7,8
1,2,5,3,6,4,7,8
1,2,56,3,7,4,8

Comparing Search Algorithms

o Visits: 1, 2,3,5,7,8 o Visits: 1, 2,5,7, 3, 8
o Time: O(n + m) o Time: O(n + m)
o Space: 0(n) o Space: O(m)

