GRAPH SEARCH
Announcements

- A5 due tonight
- A6 is out, remember to get started early
- For the next lecture, you **MUST** watch the tutorial on the shortest path algorithm beforehand: http://www.cs.cornell.edu/courses/cs2110/2017fa/online/shortestPath/shortestPath.html
- The class on 4/10 **will assume** that you understand it. Watch the tutorial once or twice and execute the algorithm on a small graph.
- Complete Quiz 4 by 4/9
Graphs
Representing Graphs

Adjacency List

1 → 2 → 4
2 → 3
3
4 → 2 → 3

Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Graph Algorithms

- Search
 - Depth-first search
 - Breadth-first search
- Shortest paths
 - Dijkstra's algorithm
- Spanning trees
 - Algorithms based on properties
 - Minimum spanning trees
 - Prim's algorithm
 - Kruskal's algorithm
Search on Graphs

- Given a graph \((V, E)\) and a vertex \(u \in V\)
- We want to "visit" each node that is reachable from \(u\)

There are many paths to some nodes.

How do we visit all nodes efficiently, without doing extra work?
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */

public static void dfs(int u) {
 visit(u);
 for all edges (u,v):
 if(!visited[v]):
 dfs(v);
}
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */

public static void dfs(int u)
{
 visit(u);
 for all edges (u,v):
 if(!visited(v)):
 dfs(v);
}

Suppose there are \(n \) vertices that are reachable along unvisited paths and \(m \) edges:

Worst-case running time? \(O(n + m) \)
Worst-case space? \(O(n) \)
DFS Quiz

- In what order would a DFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.
 - 1, 2, 3, 4, 5, 6, 7, 8
 - 1, 2, 5, 6, 3, 6, 7, 4, 7, 8
 - 1, 2, 5, 3, 6, 4, 7, 8
 - 1, 2, 5, 6, 3, 7, 4, 8
public class Node {
 boolean visited;
 List<Node> neighbors;

 /** Visit all nodes reachable on unvisited paths from this node.
 * Precondition: this node is unvisited.
 */
 public void dfs() {
 visited = true;
 for (Node n: neighbors) {
 if (!n.visited) n.dfs();
 }
 }
}
/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u); // Not Java!
 while (s is not empty) {
 u= s.pop();
 if (u not visited) {
 visit u;
 for each edge (u, v):
 s.push(v);
 }
 }
}
Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

```java
/** Visit all nodes reachable on unvisited paths from u. Precondition: u is unvisited. */
public static void bfs(int u) {
    Queue q = (u); // Not Java!
    while (q is not empty) {
        u = q.remove();
        if (u not visited) {
            visit u;
            for each (u, v):
                q.add(v);
        }
    }
}
```

Queue: 2 5 7 3 5 8 5
Analyzing BFS

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

```java
/** Visit all nodes reachable on unvisited paths from u. 
Precondition: u is unvisited. */
public static void bfs(int u) {
    Queue q = (u); // Not Java!
    while ( ) {
        u = q.remove();
        if (u not visited) {
            visit u;
            for each (u, v):
                q.add(v);
        }
    }
}
```

Suppose there are \(n \) vertices that are reachable along unvisited paths and \(m \) edges:

Worst-case running time? \(O(n + m) \)
Worst-case space? \(O(m) \)
In what order would a BFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.

- 1, 2, 3, 4, 5, 6, 7, 8
- 1, 2, 3, 4, 5, 6, 6, 7, 7, 8
- 1, 2, 5, 3, 6, 4, 7, 8
- 1, 2, 5, 6, 3, 7, 4, 8
Comparing Search Algorithms

DFS
- Visits: 1, 2, 3, 5, 7, 8
- Time: $O(n + m)$
- Space: $O(n)$

BFS
- Visits: 1, 2, 5, 7, 3, 8
- Time: $O(n + m)$
- Space: $O(m)$