
GRAPH SEARCH

Lecture 17
CS 2110 Spring 2018

1

Announcements

¨ A5 due tonight
¨ A6 is out, remember to get started early
¨ For the next lecture, you MUST watch the tutorial on

the shortest path algorithm beforehand:
http://www.cs.cornell.edu/courses/cs2110/2017f

a/online/shortestPath/shortestPath.html
¨ The class on 4/10 will assume that you understand

it. Watch the tutorial once or twice and execute the
algorithm on a small graph.

¨ Complete Quiz 4 by 4/9

2

Graphs
3

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 02 3

2 4

3

1

2

3

4

1 2 3 4

1

2

3

4

Adjacency	List Adjacency	Matrix

1 2

34

Representing Graphs

¨ Search
¤ Depth-first	search
¤ Breadth-first	search

¨ Shortest	paths
¤ Dijkstra's	algorithm

¨ Spanning	trees
Algorithms	based	on	properties
Minimum	spanning	trees

¤ Prim's	algorithm
¤ Kruskal's	algorithm

Graph Algorithms

Search on Graphs

¨ Given a graph 𝑉, 𝐸
and a vertex 𝑢 ∈ 𝑉

¨ We want to "visit"
each node that is
reachable from 𝑢

6

There are many paths to
some nodes.

How do we visit all nodes
efficiently, without doing
extra work?

1

7

2

5

3

4

6
8

1

7

2

5

3

4

6
8

Depth-First Search

/** Visit all nodes reachable
on unvisited paths from u.
Precondition: u is unvisited.
*/

public static void dfs(int u)
{

visit(u);

for all edges (u,v):

if(!visited[v]):

dfs(v);

}

7

Intuition: Recursively visit all vertices that are reachable along
unvisited paths.

1

7

2

5

3

4

6
8

1 2 3

57

8

dfs(1) visits the nodes in this
order: 1, 2, 3, 5, 7, 8

Depth-First Search

/** Visit all nodes reachable
on unvisited paths from u.
Precondition: u is unvisited.
*/

public static void dfs(int u)
{

visit(u);

for all edges (u,v):

if(!visited(v)):

dfs(v);

}

8

Intuition: Recursively visit all vertices that are reachable along
unvisited paths.

Suppose there are 𝑛 vertices that
are reachable along unvisited paths
and 𝑚 edges:

Worst-case running time? 𝑂(𝑛 +𝑚)
Worst-case space? 𝑂(𝑛)

DFS Quiz

¨ In what order would a
DFS visit the vertices of
this graph? Break ties by
visiting the lower-
numbered vertex first.
¤ 1, 2, 3, 4, 5, 6, 7, 8
¤ 1, 2, 5, 6, 3, 6, 7, 4, 7, 8
¤ 1, 2, 5, 3, 6, 4, 7, 8
¤ 1, 2, 5, 6, 3, 7, 4, 8

9

1

7

2

5

3 4

6 8

Depth-First Search in Java

public class Node {

boolean visited;

List<Node> neighbors;

/** Visit all nodes reachable on unvisited paths from
this node.

Precondition: this node is unvisited. */

public void dfs() {

visited= true;

for (Node n: neighbors) {

if (!n.visited) n.dfs();

}

}

}

10

Each vertex of the
graph is an object
of type Node

No need for a
parameter. The
object is the node.

Depth-First Search Iteratively

/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void dfs(int u) {

Stack s= (u);// Not Java!
while () {

u= s.pop();
if (u not visited) {

visit u;
for each edge (u, v):

s.push(v);
}

}
}

11

s is not empty

1

7

2

5

3

4

6
8

1Stack:

1

2
5
7

3

8

2 3

57

8

Intuition: Visit all vertices that are reachable along unvisited paths
from the current node.

Breadth-First Search

/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs(int u) {

Queue q= (u);// Not Java!
while (q is not empty) {

u= q.remove();
if (u not visited) {

visit u;
for each (u, v):

q.add(v);
}

}
}

12

Intuition: Iteratively process the graph in "layers" moving further
away from the source node.

1

7

2

5

3

4

6

8

1Queue:

1

752 53 5 8

2 3

57

8

Analyzing BFS
13

/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs(int u) {

Queue q= (u);// Not Java!
while () {

u= q.remove();
if (u not visited) {

visit u;
for each (u, v):

q.add(v);
}

}
}

Intuition: Iteratively process the graph in "layers" moving further
away from the source node.

Suppose there are 𝑛 vertices that
are reachable along unvisited paths
and 𝑚 edges:

Worst-case running time? 𝑂(𝑛 +𝑚)
Worst-case space? 𝑂(𝑚)

BFS Quiz

¨ In what order would a
BFS visit the vertices of
this graph? Break ties by
visiting the lower-
numbered vertex first.
¤ 1, 2, 3, 4, 5, 6, 7, 8
¤ 1, 2, 3, 4, 5, 6, 6, 7, 7, 8
¤ 1, 2, 5, 3, 6, 4, 7, 8
¤ 1, 2, 5, 6, 3, 7, 4, 8

14

1

7

2

5

3 4

6 8

Comparing Search Algorithms

¨ Visits: 1, 2, 3, 5, 7, 8
¨ Time: 𝑂(𝑛 +𝑚)
¨ Space: 𝑂(𝑛)

¨ Visits: 1, 2, 5, 7, 3, 8
¨ Time: 𝑂(𝑛 +𝑚)
¨ Space: 𝑂(𝑚)

DFS BFS

15

1

7

2

5

3

4

6
8

