

Announcements

\square A5 due tonight
\square A6 is out, remember to get started early
\square For the next lecture, you MUST watch the tutorial on the shortest path algorithm beforehand:
http://www.cs.cornell.edu/courses/cs2110/2017f a/online/shortestPath/shortestPath.html
\square The class on $4 / 10$ will assume that you understand it. Watch the tutorial once or twice and execute the algorithm on a small graph.
\square Complete Quiz 4 by $4 / 9$

Representing Graphs

Graph Algorithms

\square Search

- Depth-first search
\square Breadth-first search
\square Shortest paths
- Dijkstra's algorithm
\square Spanning trees
Algorithms based on properties
Minimum spanning trees
- Prim's algorithm
- Kruskal's algorithm

Search on Graphs

\square Given a graph (V, E) and a vertex $u \in V$
\square We want to "visit" each node that is reachable from u

There are many paths to some nodes.

[^0]

DFS Quiz

\square In what order would a DFS visit the vertices of this graph? Break ties by visiting the lower-
numbered vertex first.

- $1,2,3,4,5,6,7,8$

ㅁㄴ, 2, 5, 6, 3, 6, 7, 4, 7, 8

- $1,2,5,3,6,4,7,8$

ㅁ, 2, 5, 6, 3, 7, 4, 8

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
/** Visit all nodes reachable
on unvisited paths from u.
Precondition: u is unvisited.
*/
public static void dfs(int u)
\{

\quadvisit (u); for all edges (u,v) if (!visited (v)) $:$ dfs (v);	Suppose there are n vertices that are reachable along unvisited paths and m edges:
Worst-case running time? $O(n+m)$ Worst-case space? $O(n)$	

Depth-First Search in Java

	Andlyzing BFS
(ntuition: Iteratively process the graph in "layers" moving further	
away from the source node.	

BFS Quiz

\square In what order would a BFS visit the vertices of this graph? Break ties by visiting the lowernumbered vertex first.

- $1,2,3,4,5,6,7,8$

ㅁ $1,2,3,4,5,6,6,7,7,8$

- 1, 2, 5, 3, 6, 4, 7, 8
- 1, 2, 5, 6, 3, 7, 4, 8

Comparing Search Algorithms

[^0]: How do we visit all nodes efficiently, without doing
 extra work?

