Announcements

- A6 released today. GUIs. Due after Spring Break.
- A5 due Thursday.
- A4 grades released.

getSharedAncestor

```java
public Person getSharedAncestor(Person p1, Person p2){
    if (p1 == null || p2 == null) return null;

    List<Person> l1= getRepostRoute(p1);
    List<Person> l2= getRepostRoute(p2);
    if (l1 == null || l2 == null) return null;

    Iterator it1= l1.iterator();
    Iterator it2= l2.iterator();
    while (it1.hasNext() && it2.hasNext()) {
        Person p1= (Person) it1.next();
        Person p2= (Person) it2.next();
        if (p1 == p2) { return p1; }
    }
    return root;
}
```

These aren't the graphs we're looking for
Graphs

- A graph is a data structure
- A graph has:
 - a set of vertices
 - a set of edges between vertices
- Graphs are a generalization of trees

Another transport graph

A Social Network Graph

Viewing the map of states as a graph

Each state is a point on the graph, and neighboring states are connected by an edge.

Do the same thing for a map of the world showing countries
A circuit graph (flip-flop)

This is not a graph, this is a cat

This is a graph

This is a graph(ical model) that has learned to recognize cats

Graphs
Undirected graphs
- A **undirected graph** is a pair \((V, E)\) where
 - \(V\) is a (finite) set
 - \(E\) is a set of pairs \((u, v)\) where \(u, v \in V\)
 - Often require \(u \neq v\) (i.e. no self-loops)
- Element of \(V\) is called a **vertex** or **node**
- Element of \(E\) is called an **edge** or **arc**
- \(|V|\) = size of \(V\), often denoted by \(n\)
- \(|E|\) = size of \(E\), often denoted by \(m\)

\[
V = \{A, B, C, D, E\} \\
E = \{(A, B), (A, C), (B, C), (C, D)\}
\]

\(|V| = 5\) \(|E| = 4\)

Directed graphs
- A **directed graph** (digraph) is a lot like an undirected graph
 - \(V\) is a (finite) set
 - \(E\) is a set of **ordered** pairs \((u, v)\) where \(u, v \in V\)
- Every undirected graph can be easily converted to an equivalent directed graph via a simple transformation:
 - Replace every undirected edge with two directed edges in opposite directions
- ... but not vice versa

\[F = \{A, B, C, D, E\} \]
\[E = \{(A, C), (B, A), (B, C), (C, D), (D, C)\}\]

\(|F| = 5\) \(|E| = 5\)

Graph terminology
- Vertices \(u\) and \(v\) are called
 - the **source** and **sink** of the directed edge \((u, v)\), respectively
 - the **endpoints** of \((u, v)\) or \([u, v]\)
- Two vertices are **adjacent** if they are connected by an edge
- The **outdegree** of a vertex \(u\) in a directed graph is the number of edges for which \(u\) is the **source**
- The **indegree** of a vertex \(v\) in a directed graph is the number of edges for which \(v\) is the **sink**
- The **degree** of a vertex \(u\) in an undirected graph is the number of edges of which \(u\) is an **endpoint**

More graph terminology
- A **path** is a sequence \(v_0, v_1, v_2, ..., v_p\) of vertices such that for \(0 \leq i < p\), \((v_i, v_{i+1}) \in E\) if the graph is directed
- The **length** of a path is its number of edges
- A path is **simple** if it doesn’t repeat any vertices
- A **cycle** is a path \(v_0, v_1, v_2, ..., v_p\) such that \(v_0 = v_p\)
- A cycle is **simple** if it does not repeat any vertices except the first and last
- A graph is **acyclic** if it has no cycles
- A directed acyclic graph is called a **DAG**

Is this a DAG?
- **Intuition:**
 - If it’s a DAG, there must be a vertex with indegree zero
 - This idea leads to an **algorithm**
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?
- **Intuition:**
 - If it’s a DAG, there must be a vertex with indegree zero
 - This idea leads to an **algorithm**
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is this a DAG?

Intuition:
- If it’s a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

We just computed a topological sort of the DAG.
- This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices
- Useful in job scheduling with precedence constraints
Topological sort

$k = 0$;
// inv: k nodes have been given numbers in $1..k$ in such a way that
if $n_1 <= n_2$, there is no edge from n_2 to n_1.
while (there is a node of in-degree 0) {
 Let n be a node of in-degree 0;
 Give it number k;
 Delete n and all edges leaving it from the graph.
 $k = k + 1$;
}

1. Abstract algorithm
2. Don’t really want to change the graph.
3. Will have to invent data structures to make it efficient.

Graph coloring

- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

A B C D

- How many colors are needed to color this graph?

An application of coloring

- Vertices are tasks
- Edge (u, v) is present if tasks u and v each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the tasks
- Minimum number of colors needed to color the graph = minimum number of time slots required

Coloring a graph

- How many colors are needed to color the states so that no two adjacent states have the same color?
- Asked since 1852
- 1879: Kemp publishes a proof that only 4 colors are needed!
- 1880: Julius Peterson finds a flaw in Kemp’s proof...

Four Color Theorem

Every planar graph is 4-colorable [Appel & Haken, 1976]
The proof rested on checking that 1,936 special graphs had a certain property.
They used a computer to check that those 1,936 graphs had that property!
Basically the first time a computer was needed to check something. Caused a lot of controversy.
Gries looked at their computer program, a recursive program written in the assembly language of the IBM 7090 computer, and found an error, which was safe (it said something didn’t have the property when it did) and could be fixed. Others did the same.

Since then, there have been improvements. And a formal proof has even been done in the Coq proof system.
Planarity
- A graph is planar if it can be drawn in the plane without any edges crossing.

Is this graph planar? Yes!

Planarity
- A graph is planar if it can be drawn in the plane without any edges crossing.

Is this graph planar? Yes!

Bipartite graphs
- A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that no edge connects two vertices in the same set.

The following are equivalent:
- G is bipartite
- G is 2-colorable
- G has no cycles of odd length

Traveling salesperson
- Find a path of minimum distance that visits every city.
Representations of graphs

Adjacency List
- 1 → 2
- 2 → 3
- 3 → 4
- 4 → 3

Adjacency Matrix

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Graph Quiz

Which of the following two graphs are DAGs?

Directed Acyclic Graph

Graph 1:
```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Graph 2:
```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Graph Quiz

Adjacency matrix or adjacency list?

- **v** = number of vertices
- **e** = number of edges
- **d(u)** = degree of vertex u = no. edges leaving u
- **Adjacency List**
 - Uses space $O(v + e)$
 - Enumerate all edges in time $O(v + e)$
 - Answer "Is there an edge from u_1 to u_2?" in $O(d(u_1))$ time
 - Better for sparse graphs (fewer edges)
- **Adjacency Matrix**
 - Uses space $O(v^2)$
 - Enumerate all edges in time $O(v^2)$
 - Answer "Is there an edge from u_1 to u_2?" in $O(1)$ time
 - Better for dense graphs (lots of edges)

Graph algorithms

- **Search**
 - Depth-first search
 - Breadth-first search
- **Shortest paths**
 - Dijkstra’s algorithm
- **Minimum spanning trees**
 - Jarnik/Prim/Dijkstra algorithm
 - Kruskal’s algorithm