
3/27/18

1

Lecture 17
CS2110 Spring 2018GRAPHS

Announcements

¨ A6 released today. GUIs. Due after Spring Break.
¨ A5 due Thursday.
¨ A4 grades released

2

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18+

A4 Comments
3

getSharedAncestor
4

public Person
getSharedAncestor(Person p1, Person p2){

}

List<Person> l1= getRepostRoute(p1);
List<Person> l2= getRepostRoute(p2);
if (l1 == null || l2 == null) return null;

Iterator it1= l1.iterator();
Iterator it2= l2.iterator();

while (it1.hasNext() && it2.hasNext()) {
Person p1= (Person) it1.next();
Person p2- (Person) it2.next();

}

Person sa= root;

if (p1 == p2){ sa= p1; }
else { return sa; }

return sa;

if (p1 == null || p2 == null) return null;

Lecture 17
CS2110 Spring 2018GRAPHS

These aren't the graphs we're looking for

3/27/18

2

¨ A graph is a data
structure

¨ A graph has
¤ a set of vertices
¤ a set of edges

between vertices

¨ Graphs are a
generalization of trees

Graphs This is a graph

Another transport graph This is a graph

A Social Network Graph Viewing	the	map	of	states	as	a	graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Each state is a point on the graph, and neighboring states are
connected by an edge.

Do the same thing for a map of the world showing countries

3/27/18

3

A circuit graph (flip-flop) A circuit graph (Intel 4004)

This is not a graph, this is a cat

V.J. Wedeen and L.L. Wald, Martinos Center for Biomedical Imaging at
MGH

This is a graph

This is a graph(ical model) that
has learned to recognize cats Graphs

K5
K3,3

3/27/18

4

Undirect graphs

¨ A	undirected	graph is	a	pair	(V, E) where
¤ V is	a	(finite)	set
¤ E is	a	set	of	pairs	(u, v) where	u,v Î V

nOften	require	u ≠ v (i.e.	no	self-loops)

¨ Element	of	V is	called	a	vertex or	node
¨ Element	of	E is	called	an	edge or	arc

¨ |V| =	size	of	V,	often	denoted	by	n
¨ |E| =	size	of	E,	often	denoted	by	m

A

B C

DE

V = {A, B, C, D, E}
E = {(A, B), (A, C),

(B, C), (C, D)}

|V| = 5
|E| = 4

Directed graphs

¨ A	directed	graph (digraph)	is	a	lot	like	
an	undirected	graph	
¤ V is	a	(finite)	set

¤ E is	a	set	of	ordered pairs	(u, v) where	
u,v Î V

¨ Every	undirected	graph	can	be	easily	
converted	to	an	equivalent	directed	
graph	via	a	simple	transformation:
¤ Replace	every	undirected	edge	with	
two	directed	edges	in	opposite	
directions

¨ …	but	not	vice	versa

A

B C

DE

V = {A, B, C, D, E}
E = {(A, C), (B, A),

(B, C), (C, D),
(D, C)}

|V| = 5
|E| = 5

Graph terminology

¨ Vertices u and v are called
¤ the source and sink of the directed edge (u, v),

respectively
¤ the endpoints of (u, v) or	{u, v}

¨ Two vertices are adjacent if they are
connected by an edge

¨ The outdegree of a vertex u in a directed
graph is the number of edges for which u is the
source

¨ The indegree of a vertex v in a directed graph
is the number of edges for which v is the sink

¨ The degree of a vertex u in an undirected
graph is the number of edges of which u is an
endpoint

A

B C

DE

A

B C

DE

More graph terminology

¨ A	path is	a	sequence	v0,v1,v2,...,vp of	vertices	
such	that	for	0 ≤ i < p,
¤ (vi, vi+1)∈E if the graph is directed
¤ {vi, vi+1}∈E if the graph is undirected

¨ The	length	of	a	path is	its	number	of	edges	
¨ A	path	is	simple if	it	doesn’t	repeat	any	vertices
¨ A	cycle is	a	path	v0, v1, v2, ..., vp such	that	v0 = vp

¨ A	cycle	is	simple if	it	does	not	repeat	any	
vertices	except	the	first	and	last

¨ A	graph	is	acyclic if	it	has	no	cycles
¨ A	directed	acyclic	graph	is	called	a	DAG

A

B C

DE

A

B C

DE

DAG

Not a DAG

Path
A,C,D

Is	this	a	DAG?

¨ Intuition:	
¤ If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero

¨ This	idea	leads	to	an	algorithm
¤ A	digraph	is	a	DAG	if	and	only	if	we	can	iteratively	delete	
indegree-0	vertices	until	the	graph	disappears

A

B

C

D

E

F

Is	this	a	DAG?

¨ Intuition:	
¤ If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero

¨ This	idea	leads	to	an	algorithm
¤ A	digraph	is	a	DAG	if	and	only	if	we	can	iteratively	delete	
indegree-0	vertices	until	the	graph	disappears

B

C

D

E

F

3/27/18

5

Is	this	a	DAG?

¨ Intuition:	
¤ If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero

¨ This	idea	leads	to	an	algorithm
¤ A	digraph	is	a	DAG	if	and	only	if	we	can	iteratively	delete	
indegree-0	vertices	until	the	graph	disappears

C

D

E

F

Is	this	a	DAG?

¨ Intuition:	
¤ If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero

¨ This	idea	leads	to	an	algorithm
¤ A	digraph	is	a	DAG	if	and	only	if	we	can	iteratively	delete	
indegree-0	vertices	until	the	graph	disappears

D

E

F

Is	this	a	DAG?

¨ Intuition:	
¤ If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero

¨ This	idea	leads	to	an	algorithm
¤ A	digraph	is	a	DAG	if	and	only	if	we	can	iteratively	delete	
indegree-0	vertices	until	the	graph	disappears

E

F

Is	this	a	DAG?

¨ Intuition:	
¤ If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero

¨ This	idea	leads	to	an	algorithm
¤ A	digraph	is	a	DAG	if	and	only	if	we	can	iteratively	delete	
indegree-0	vertices	until	the	graph	disappears

F

Is	this	a	DAG?

¨ Intuition:	
¤ If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero

¨ This	idea	leads	to	an	algorithm
¤ A	digraph	is	a	DAG	if	and	only	if	we	can	iteratively	delete	
indegree-0	vertices	until	the	graph	disappears

YES!

Topological	sort

¨ We just computed a topological sort of the DAG
¤ This is a numbering of the vertices such that all edges go

from lower- to higher-numbered vertices
¤ Useful in job scheduling with precedence constraints

1

2

3

4

5

6

3/27/18

6

Topological	sort

k= 0;
// inv: k nodes have been given numbers in 1..k in such a way that

if n1 <= n2, there is no edge from n2 to n1.
while (there is a node of in-degree 0) {

Let n be a node of in-degree 0;
Give it number k;
Delete n and all edges leaving it from the graph.
k= k+1;

}

1

2

3

4

5

6

1. Abstract algorithm
2. Don’t really want to change the

graph.
3. Will have to invent data structures

to make it efficient.

Graph	coloring

¨ A coloring of an undirected graph is an assignment of
a color to each node such that no two adjacent
vertices get the same color

¨ How many colors are needed to color this graph?

A

B

C

D

E

F

Graph	coloring

¨ A coloring of an undirected graph is an assignment
of a color to each node such that no two adjacent
vertices get the same color

¨ How many colors are needed to color this graph?

A

B

C

D

E

F

An	application	of	coloring

¨ Vertices are	tasks
¨ Edge (u, v) is	present	if	tasks	u and	v each	require	access	to	

the	same	shared	resource,	and	thus	cannot	execute	
simultaneously

¨ Colors are	time	slots to	schedule	the	tasks
¨ Minimum	number	of	colors	needed	to	color	the	graph	=	

minimum	number	of	time	slots	required

A

B

C

D

E
F

Coloring	a	graph

¨ How many colors are
needed to color the
states so that no two
adjacent states have the
same color?

¨ Asked since 1852
¨ 1879: Kemp publishes a

proof that only 4 colors
are needed!

¨ 1880: Julius Peterson
finds a flaw in Kemp's
proof…

Every planar graph is 4-colorable [Appel & Haken, 1976]

The proof rested on checking that 1,936 special graphs had a certain property.

They used a computer to check that those 1, 936 graphs had that property!

Basically the first time a computer was needed to check something. Caused a lot
of controversy.

Gries looked at their computer program, a recursive program written in the
assembly language of the IBM 7090 computer, and found an error, which was
safe (it said something didn’t have the property when it did) and could be fixed.
Others did the same.

Since then, there have been improvements. And a formal proof has even been
done in the Coq proof system

Four	Color	Theorem

3/27/18

7

Planarity

¨ A graph is planar if it can be drawn in the plane without any
edges crossing

¨ Is this graph planar?

A

B

C

D

E

F

Planarity

¨ A graph is planar if it can be drawn in the plane
without any edges crossing

¨ Is this graph planar?
¤ Yes!

A

B

C

D

E

F

Planarity

¨ A graph is planar if it can be drawn in the plane
without any edges crossing

¨ Is this graph planar?
¤ Yes!

A

B

C

D

E

F

Detecting	Planarity

Kuratowski's Theorem:

¨ A graph is planar if and only if it does not contain a
copy of K5 or K3,3 (possibly with other nodes along
the edges shown)

K5 K3,3

Bipartite	graphs

¨ A	directed	or	undirected	graph	is	bipartite if	the	vertices	can	
be	partitioned	into	two	sets	such	that	no	edge	connects	two	
vertices	in	the	same	set

¨ The	following	are	equivalent
¤ G is	bipartite
¤ G is	2-colorable
¤ G has	no	cycles	of	odd	length

1

2

3

A

B

C

D

Traveling	salesperson

Find	a	path	of	minimum	distance	that	visits	every	city	

Amsterdam

Rome

Boston

Atlanta

London
Paris

Copenhagen

Munich

Ithaca

New York

Washington

1202
1380

1214

1322

1356

1002

512
216

441

189
160

15561323

419

210

224 132

660 505

1078

3/27/18

8

Representations	of	graphs

2 3

2 4

3

1

2

3

4

Adjacency	List Adjacency	Matrix

1 2

34

1	 2			3			4
1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

1 2 3

1

2

3

Graph Quiz

3 2

3

1

2

3 1

0 1 1

0 0 0

0 1 0

Graph	1: Graph	2:

Which of the following two graphs are DAGs?

Directed Acyclic Graph

1 2 3

1

2

3

Graph Quiz

3 2

3

1

2

3 1

0 1 1

0 0 0

0 1 0

1
3

2

1 3

2

Adjacency	matrix	or	adjacency	list?

¤ v =	number	of	vertices
¤ e =	number	of	edges
¤ d(u) =	degree	of	u =	no.	edges	leaving	u

¨ Adjacency	Matrix
¤ Uses	space	O(v2)
¤ Enumerate	all	edges	in	time	O(v2)
¤ Answer	“Is	there	an	edge	from	u1 to	u2?” in	O(1) time
¤ Better	for	dense	graphs	(lots	of	edges)

1	 2			3			4
1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

¤ v =	number	of	vertices
¤ e =	number	of	edges
¤ d(u) =	degree	of	u =	no.	edges	leaving	u

¨ Adjacency	List
¤ Uses	space	O(v + e)
¤ Enumerate	all	edges	in	time	O(v + e)
¤ Answer	“Is	there	an	edge	from	u1 to	u2?” in	O(d(u1)) time
¤ Better	for	sparse	graphs	(fewer	edges)

2 3

2 4

3

1

2

3

4

Adjacency	matrix	or	adjacency	list? Graph	algorithms

¨ Search
¤ Depth-first	search
¤ Breadth-first	search

¨ Shortest	paths
¤ Dijkstra's	algorithm

¨ Minimum	spanning	trees
¤ Jarnik/Prim/Dijkstra algorithm
¤ Kruskal's	algorithm

