HEAPS & PRIORITY QUEUES

Lecture 16
CS2110 Spring 2018
Announcements

- A4 due TOMORROW. Late deadline is Sunday.
- A5 released. Due next Thursday.
- Deadline for Prelim 1 regrade requests is tomorrow.
- Remember to complete your TA evaluations by tonight.
Abstract vs concrete data structures

- Abstract data structures are interfaces
 - they specify only interface (method names and specs)
 - not implementation (method bodies, fields, …)

- Concrete data structures are classes. Abstract data structures can have multiple possible implementations by different concrete data structures.
Concrete data structures

- Array
- LinkedList (singly-linked, doubly-linked)
- Trees (binary, general, red-black)
Abstract data structures

- **interface** List defines an “abstract data type”.
- It has methods: add, get, remove, ...
- Various **classes** ("concrete data types") implement List:

<table>
<thead>
<tr>
<th>Class:</th>
<th>ArrayList</th>
<th>LinkedList</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backing storage:</td>
<td>array</td>
<td>chained nodes</td>
</tr>
<tr>
<td>add(i, val)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>add(0, val)</td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>add(n, val)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>get(i)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>get(0)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>get(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Abstract data structures

- **List** (ArrayList, LinkedList)
- **Set** (HashSet, TreeSet)
- **Map** (HashMap, TreeMap)
- **Stack**
- **Queue**

Both stack and queue efficiently implementable using a singly linked list with head and tail

- **PriorityQueue**
Priority Queue

• Data structure in which data items are Comparable

• Elements have a priority order (smaller elements---determined by compareTo()---have higher priority)

• remove() return the element with the highest priority

• break ties arbitrarily
Many uses of priority queues

- Event-driven simulation: customers in a line
- Collision detection: "next time of contact" for colliding bodies
- Graph searching: Dijkstra's algorithm, Prim's algorithm
- AI Path Planning: A* search
- Statistics: maintain largest M values in a sequence
- Operating systems: load balancing, interrupt handling
- Discrete optimization: bin packing, scheduling
- College: prioritizing assignments for multiple classes.

Surface simplification [Garland and Heckbert 1997]
interface PriorityQueue<E> {
 boolean add(E e) {...} // insert e.
 E poll() {...} // remove/return min elem.
 E peek() {...} // return min elem.
 void clear() {...} // remove all elems.
 boolean contains(E e)
 boolean remove(E e)
 int size() {...}
 Iterator<E> iterator()
}
Priority queues as lists

• Maintain as a list
 – `add()` put new element at front – $O(1)$
 – `poll()` must search the list – $O(n)$
 – `peek()` must search the list – $O(n)$

• Maintain as an ordered list
 – `add()` must search the list – $O(n)$
 – `poll()` min element at front – $O(1)$
 – `peek()` $O(1)$

• Maintain as red-black tree
 – `add()` must search the tree & rebalance – $O(\log n)$
 – `poll()` must search the tree & rebalance – $O(\log n)$
 – `peek()` $O(\log n)$

Can we do better?
Heaps

- A **heap** is a binary tree that satisfies two properties
 1) Completeness. Every level of the tree (except last) is completely filled.
 2) Heap Order Invariant. Every element in the tree is \leq its parent

Do not confuse with heap memory, where a process dynamically allocates space—different usage of the word heap.
Every level (except last) completely filled.

Nodes on bottom level are as far left as possible.
Completeness Property

Not a heap because:

- missing a node on level 2
- bottom level nodes are not as far left as possible
Every element is \leq its parent

Note: Bigger elements can be deeper in the tree!
Which of the following are valid heaps?

(a) No
(b) No
(c) No
(d) Yes
Heaps

- A **heap** is a binary tree that satisfies two properties
 1) Completeness. Every level of the tree (except last) is completely filled. All holes in last level are all the way to the right.
 2) Heap Order Invariant. Every element in the tree is \(\leq \) its parent

- A heap implements three key methods:
 1) `add(e)`: adds a new element to the heap
 2) `poll()`: deletes the max element and returns it
 3) `peek()`: returns the max element
add(e)

1. Put in the new element in a new node (leftmost empty leaf)
2. Bubble new element up while greater than parent

Time is O(log n)
poll()

1. Save root element in a local variable
2. Assign last value to root, delete last node.
3. While less than a child, switch with bigger child (bubble down)

Time is $O(\log n)$
1. Return root value

Time is $O(1)$
Implementing Heaps

```java
public class HeapNode<E> {
    private E value;
    private HeapNode left;
    private HeapNode right;
    ...
}
```
public class Heap<E> {
 private E[] heap;
 ...
}
Numbering the nodes

Number node starting at root row by row, left to right

Level-order traversal

Children of node k are nodes $2k+1$ and $2k+2$
Parent of node k is node $(k-1)/2$
Storing a heap in an array

- Store node number i in index i of array b
- Children of $b[k]$ are $b[2k + 1]$ and $b[2k + 2]$
- Parent of $b[k]$ is $b[(k - 1)/2]$
add() --assuming there is space

/** An instance of a heap */
class Heap<E> {
 E[] b = new E[50]; // heap is b[0..n-1]
 int n = 0; // heap invariant is true

 /** Add e to the heap */
 public void add(E e) {
 b[n] = e;
 n = n + 1;
 bubbleUp(n - 1); // given on next slide
 }
}
add(). Remember, heap is in b[0..n-1]

class Heap<E> {
/** Bubble element #k up to its position.
 * Pre: heap inv holds except maybe for k */
private void bubbleUp(int k) {
 int p = (k-1)/2;
 // inv: p is parent of k and every elmnt
 // except perhaps k is <= its parent
 while (k > 0 && b[k].compareTo(b[p]) > 0) {
 swap(b[k], b[p]);
 k = p;
 p = (k-1)/2;
 }
}
/** Remove and return the largest element
 * (return null if list is empty) */

public E poll() {
 if (n == 0) return null;
 E v = b[0]; // largest value at root.
 b[0] = b[n]; // element to root
 n = n - 1; // move last
 bubbleDown(0);
 return v;
}
/** Tree has n node.
* Return index of bigger child of node k
* (2k+2 if k >= n) */

public int biggerChild(int k, int n) {
 int c = 2*k + 2; // k’s right child
 if (c >= n || b[c-1] > b[c])
 c = c-1;
 return c;
}
/** Bubble root down to its heap position.
 * Pre: b[0..n-1] is a heap except maybe b[0] */
private void bubbleDown() {
 int k = 0;
 int c = biggerChild(k, n);
 // inv: b[0..n-1] is a heap except maybe b[k] AND
 // b[c] is b[k]'s biggest child
 while (c < n && b[k] < b[c]) {
 swap(b[k], b[c]);
 k = c;
 c = biggerChild(k, n);
 }
}
peek() . Remember, heap is in b[0..n-1]

```java
/** Return the largest element
 * (return null if list is empty) */
 public E peek() {
     if (n == 0) return null;
     return b[0];   // largest value at root.
 }```
Quiz 2: Let's try it!

Here's a heap, stored in an array:

\[9 \ 5 \ 2 \ 1 \ 2 \ 2\]

What is the state of the array after execution of add(6)? Assume the existing array is large enough to store the additional element.

A. \[9 \ 5 \ 2 \ 1 \ 2 \ 2 \ 6\]
B. \[9 \ 5 \ 6 \ 1 \ 2 \ 2 \ 2\]
C. \[9 \ 6 \ 5 \ 1 \ 2 \ 2 \ 2\]
D. \[9 \ 6 \ 5 \ 2 \ 1 \ 2 \ 2\]
Quiz 2: Let's try it!

Here's a heap, stored in an array:

$$[9 \ 5 \ 2 \ 1 \ 2 \ 2] \Rightarrow [9 \ 5 \ 6 \ 1 \ 2 \ 2 \ 2]$$

Write the array after execution of `add(6)`
1. Make b[0..n-1] into a **max**-heap (in place)

2. for (k= n-1; k > 0; k= k-1) {
   b[k]= poll  – i.e. take max element out of heap.
}

```
0 1 2 3 4
4 6 12 14 55
```
A heap is can be used to implement priority queues.

- Note: need a min-heap instead of a max-heap.

Gives better complexity than either ordered or unordered list implementation:

- \texttt{add()}: \(O(\log n)\) (\(n\) is the size of the heap)
- \texttt{poll()}: \(O(\log n)\)
- \texttt{peek()}: \(O(1)\)
interface PriorityQueue<E> {
    boolean add(E e) {...} //insert e.
    void clear() {...} //remove all elems.
    E peek() {...} //return min elem.
    E poll() {...} //remove/return min elem.
    boolean contains(E e)
    boolean remove(E e)
    int size() {...}
    Iterator<E> iterator()
}

IF implemented with a heap!
What if the priority is independent from the value?

Separate priority from value and do this:

```c
add(e, p); //add element e with priority p (a double)
```

THIS IS EASY!

Be able to change priority

```c
change(e, p); //change priority of e to p
```

THIS IS HARD!

Big question: How do we find e in the heap?
Searching heap takes time proportional to its size! No good!
Once found, change priority and bubble up or down. OKAY

Assignment A5: implement this heap! Use a second data structure to make change-priority expected log n time