
3/22/18

1

HEAPS & PRIORITY QUEUES
Lecture 16
CS2110 Spring 2018

Announcements

¨ A4 due TOMORROW. Late deadline is Sunday.
¨ A5 released. Due next Thursday.
¨ Deadline for Prelim 1 regrade requests is tomorrow.
¨ Remember to complete your TA evaluations by

tonight.

2

Abstract vs concrete data structures

¨ Abstract data structures are interfaces
¤ they specify only interface (method names and specs)
¤ not implementation (method bodies, fields, …)

¨ Concrete data structures are classes. Abstract data
structures can have multiple possible implementations
by different concrete data structures.

3

Concrete data structures

¨ Array
¨ LinkedList (singley-linked, doubly-linked)
¨ Trees (binary, general, red-black)

4

Abstract data structures
5

¨ interface List defines an “abstract data type”.
¨ It has methods: add, get, remove, …
¨ Various classes ("concrete data types") implement List:

Class: ArrayList LinkedList

Backing storage: array chained nodes

add(i, val) O(n) O(n)

add(0, val) O(n) O(1)

add(n, val) O(1) O(1)

get(i) O(1) O(n)

get(0) O(1) O(1)

get(n) O(1) O(1)

Abstract data structures

¨ List (ArrayList, LinkedList)
¨ Set (HashSet, TreeSet)
¨ Map (HashMap, TreeMap)
¨ Stack
¨ Queue

¨ PriorityQueue

6

55 12 19 16head

tail

Both stack and queue efficiently implementable
using a singly linked list with head and tail

3/22/18

2

Priority Queue

• Data structure in which data items are Comparable

• Elements have a priority order (smaller elements---determined by
compareTo()---have higher priority)

•remove() return the element with the highest priority

• break ties arbitrarily

7

Many uses of priority queues

¨ Event-driven simulation: customers in a line

¨ Collision detection: "next time of contact" for colliding bodies

¨ Graph searching: Dijkstra's algorithm, Prim's algorithm

¨ AI Path Planning: A* search

¨ Statistics: maintain largest M values in a sequence

¨ Operating systems: load balancing, interrupt handling

¨ Discrete optimization: bin packing, scheduling

¨ College: prioritizing assignments for multiple classes.

8

Surface simplification [Garland and Heckbert 1997]

java.util.PriorityQueue<E>
9

interface PriorityQueue<E> {
boolean add(E e) {...} //insert e.
E poll() {...} //remove/return min elem.
E peek() {...} //return min elem.
void clear() {...} //remove all elems.
boolean contains(E e)
boolean remove(E e)
int size() {...}
Iterator<E> iterator()

}

Priority queues as lists
10

• Maintain as a list
–add() put new element at front – O(1)
–poll() must search the list – O(n)
–peek() must search the list – O(n)
• Maintain as an ordered list
–add() must search the list – O(n)
–poll() min element at front – O(1)
–peek() O(1)
• Maintain as red-black tree
–add() must search the tree & rebalance – O(log n)
–poll() must search the tree & rebalance – O(log n)
–peek() O(log n)

Can we do better?

11

• A heap is a binary tree that satisfies two properties
1) Completeness. Every level of the tree (except

last) is completely filled.
2) Heap Order Invariant. Every element in the tree

is <= its parent

Do not confuse with heap memory, where a process
dynamically allocates space–different usage of the word
heap.

Heaps

55

2238

35 1912 21

20 46 10 8

12

Every level (except last)
completely filled.
Nodes on bottom level are
as far left as possible.

Completeness Property

3/22/18

3

missing nodes

13

Not a heap because:

• missing a node on level 2

• bottom level nodes are
not as far left as possible

Completeness Property

55

2238

35 1912

20 4 10 8

Every element is <= its parent

Note: Bigger elements
can be deeper in the tree!

14

Order Property

55

2238

35 1912 2

20 46 10 18

Heap Quiz
15

11 13

12 15

20

11

12

15 14

15

20

11 10

12

15

15

20

11 10

12

20

(a) (b) (c) (d)

Which of the following are valid heaps?

No No No Yes

16

• A heap is a binary tree that satisfies two properties
1) Completeness. Every level of the tree (except

last) is completely filled. All holes in last level are
all the way to the right.

2) Heap Order Invariant. Every element in the tree
is <= its parent

• A heap implements three key methods:
1) add(e): adds a new element to the heap
2) poll(): deletes the max element and returns it
3) peek(): returns the max element

Heaps

17

55

2238

35 1912 2

20 46 10 18 5019

5022

50

1. Put in the new element in a new node (leftmost empty leaf)
2. Bubble new element up while greater than parent

Time is O(log n)

add(e)
18

55

38

35 12 2

20 46 10 18 19

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node.
3. While less than a child, switch with bigger child (bubble down)

Time is O(log n) 5519

19

19

50

22

poll()

3/22/18

4

19

peek()

50

2238

35 1912 2

20 46 10 18

50

1. Return root value

Time is O(1)

Implementing Heaps
20

public class HeapNode<E> {
private E value;
private HeapNode left;
private HeapNode right;
...

}

Implementing Heaps
21

public class Heap<E> {
private E[] heap;
...

}

Numbering the nodes

55

2238

35 1912 21

20 46

Number node starting at
root row by row, left to right

Level-order traversal

0

1 2

3

9

65

7 8

4

Children of node k are nodes 2k+1 and 2k+2
Parent of node k is node (k-1)/2

Storing a heap in an array

• Store node number i in index i
of array b

• Children of b[k] are b[2k +1]
and b[2k +2]

• Parent of b[k] is b[(k-1)/2]

0 1 2 3 4 5 6 7 8 9
parent

children

55

2238

35 1912 21

20 46

0

1 2

3

9

65

7 8

4

55 38 22 35 12 19 21 20 6 4
0 1 2 3 4 5 6 7 8 9

/** An instance of a heap */
class Heap<E> {

E[] b= new E[50]; // heap is b[0..n-1]
int n= 0; // heap invariant is true

/** Add e to the heap */
public void add(E e) {

b[n]= e;
n= n + 1;
bubbleUp(n - 1); // given on next slide

}
}

24

add() --assuming there is space

3/22/18

5

class Heap<E> {
/** Bubble element #k up to its position.

* Pre: heap inv holds except maybe for k */
private void bubbleUp(int k) {

// inv: p is parent of k and every elmnt
// except perhaps k is <= its parent
while () {

}
}

25

add(). Remember, heap is in b[0..n-1]

int p= (k-1)/2;

k > 0 && b[k].compareTo(b[p]) > 0
swap(b[k], b[p]);
k= p;
p= (k-1)/2;

/** Remove and return the largest element
* (return null if list is empty) */

public E poll() {
if (n == 0) return null;
E v= b[0]; // largest value at root.
b[0]= b[n]; // element to root
n= n – 1; // move last
bubbleDown(0);
return v;

}

26

poll(). Remember, heap is in b[0..n-1]

/** Tree has n node.
* Return index of bigger child of node k

(2k+2 if k >= n) */
public int biggerChild(int k, int n) {

int c= 2*k + 2; // k’s right child
if (c >= n || b[c-1] > b[c])

c= c-1;
return c;

}

27

poll()

/** Bubble root down to its heap position.
Pre: b[0..n-1] is a heap except maybe b[0] */

private void bubbleDown() {

// inv: b[0..n-1] is a heap except maybe b[k] AND
// b[c] is b[k]’s biggest child
while () {

}
}

28

int k= 0;
int c= biggerChild(k, n);

c < n && b[k] < b[c]

swap(b[k], b[c]);
k= c;
c= biggerChild(k, n);

poll()

/** Return the largest element
* (return null if list is empty) */

public E peek() {
if (n == 0) return null;
return b[0]; // largest value at root.

}

29

peek(). Remember, heap is in b[0..n-1] Quiz 2: Let's try it!
30

Here's a heap, stored in an array:
[9 5 2 1 2 2]

What is the state of the array after execution of add(6)?
Assume the existing array is large enough to store the
additional element.

A. [9 5 2 1 2 2 6]
B. [9 5 6 1 2 2 2]
C. [9 6 5 1 2 2 2]
D. [9 6 5 2 1 2 2]

3/22/18

6

Quiz 2: Let's try it!

9

25

1 22

0

1 2

3 54

Here's a heap, stored in an array:
[9 5 2 1 2 2]

Write the array after execution of add(6)

66 2

6

⇒ [9 5 6 1 2 2 2]

HeapSort
32

1. Make b[0..n-1] into a max-heap (in place)

2. for (k= n-1; k > 0; k= k-1) {
b[k]= poll –i.e. take max element out of heap.

}

55 4 12 6 14
0 1 2 3 4

55

124

6 14

0

1 2

3 4

6

4

14

6

55 4 12614 4 6

55
614

6
5514 6

14
4

14

12

4
12 4

6

4

12

1246

6

64

4

4

Priority queues as heaps
33

• A heap is can be used to implement priority queues
• Note: need a min-heap instead of a max-heap

• Gives better complexity than either ordered or
unordered list implementation:
–add(): O(log n) (n is the size of the heap)
–poll(): O(log n)
–peek(): O(1)

java.util.PriorityQueue<E>
34

interface PriorityQueue<E> { TIME
boolean add(E e) {...} //insert e. log
void clear() {...} //remove all elems.
E peek() {...} //return min elem. constant
E poll() {...} //remove/return min elem. log
boolean contains(E e) linear
boolean remove(E e) linear
int size() {...} constant
Iterator<E> iterator()

} IF implemented with a heap!

What if the priority is independent from the
value?

Separate priority from value and do this:

add(e, p); //add element e with priority p (a double)

THIS IS EASY!

35

Be able to change priority

change(e, p); //change priority of e to p

THIS IS HARD!

Big question: How do we find e in the heap?
Searching heap takes time proportional to its size! No good!
Once found, change priority and bubble up or down. OKAY

Assignment A5: implement this heap! Use a second data
structure to make change-priority expected log n time

