

TREES IILecture 12CS2110 – Spring 2018

Announcements

Prelim 1 is Tonight, bring your student ID

<u>5:30PM EXAM</u>

- OLH155: netids starting aa to dh
- OLH255: netids starting di to ji
- PHL101: netids starting jj to ks (Plus students who switched from the 7:30 exam)

7:30PM EXAM (314 Students)

- OLH155: netids starting kt to rz
- OLH255: netids starting sa to wl
- PHL101: netids starting wm to zz (Plus students who switched from the 5:30 exam)

Comparing Data Structures

Data Structure	add(val x)	lookup(int i)	search(val x)
Array 2130	O(n)	0(1)	O(n)
Linked List $(2 \rightarrow 1 \rightarrow 3 \rightarrow 0)$	0(1)	O(n)	O(n)
Binary Tree 1	0(1)	O(n)	O(n)
BST 2 3	0(height)	0(height)	0(height)

Binary Search Trees

Red-Black Trees

- Self-balancing BST
- Each node has one extra bit of information "color"
- Constraints on how nodes can be colored enforces approximate balance

Red-Black Trees

- 1) A red-black tree is a binary search tree.
- 2) Every node is either red or black.
- 3) The root is black.
- 4) If a node is red, then its (non-null) children are black.
- 5) For each node, every path to a decendant null node contains the same number of black nodes.

RB Tree Quiz

7

Which of the following are red-black trees?

Class for a RBNode

Insert

```
Insert(RBTree t, int v){
  Node p;
  Node n= t.root;
  while(n != null){
    p = n;
    if(v < n.value){n= n.left}</pre>
    else{n= n.right}
  }
  Node vnode= new Node(v, RED)
  if(p == NULL){
    t.root= vnode;
  } else if(v < p.value){</pre>
    p.left= vnode; vnode.parent= p;
  } else{
    p.right= vnode; vnode.parent= p;
  }
  fixTree(t, vnode);
}
```


Case 1: (parent is black

Case 2: parent is red uncle is black node on outside Case 3: parent is red uncle is black node on inside

4

3

2

5

3 5

Case 4: parent is red uncle is red

Rotations

fixTree

12

```
fixTree(RBTree t, RBNode n){
  while(n.parent.color == RED){ // not Case 1
    if(n.parent.parent.right == n.parent){
      Node uncle = n.parent.parent.left;
      if(uncle.color == BLACK) { // Case 2 or 3
        if(n.parent.left == n) { rightRotate(n);} //3
        n.parent.color== BLACK;
        n.parent.parent.color= RED;
        leftRotate(n.parent.parent);
      } else { //uncle.color == RED // Case 4
        n.parent.color= BLACK;
        uncle.color= BLACK;
        n.parent.parent.color= RED;
        n= n.parent.parent;
      }
    } else {...} // n.parent.parent.left == n.parent
  }
  t.root.color == BLACK;// fix root
}
```

Search

Red-black trees are a special case of binary search trees
 Search works exactly the same as in any BST
 Time: O(height)

14

□ Observation 1: Every binary tree must have a null node with depth $\leq \log(n + 1)$

15

□ Observation 1: Every binary tree must have a null node with depth $\leq \log(n + 1)$

n	log(n+1)		
1	1		
2	1.584		
3	2		
4	2.321		
5	2.584		
6	2.807		
7	3		
8	3.169		
9	3.321		
10	3.249		

- 16
- □ Observation 1: Every binary tree must have a null node with depth $\leq \log(n + 1)$
- Observation 2: In a red-black tree, the number of red nodes in a path from the root to a null node is less than or equal to the number of black nodes.

- 17
- □ Observation 1: Every binary tree must have a null node with depth $\leq \log(n + 1)$
- Observation 2: In a red-black tree, the number of red nodes in a path from the root to a null node is less than or equal to the number of black nodes.
- Observation 3: The maximum path length from the root to a null node is at most 2 times the minimum path length from the root to a null node.

- 🗆 Observatio
 - □ Observation 1: Every binary tree must have a null node with depth $\leq \log(n + 1)$
 - Observation 2: In a red-black tree, the number of red nodes in a path from the root to a null node is less than or equal to the number of black nodes.
 - Observation 3: The maximum path length from the root to a null node is at most 2 times the minimum path length from the root to a null node.
- $h = \max_{root \to null} path \, len \leq 2 \cdot \min_{root \to null} path \, len \leq 2 \log(n+1)$

h is $O(\log n)$

Comparing Data Structures

Data Structure	add(val x)	lookup(int i)	search(val x)
Array 2 1 3 0	O(n)	0(1)	O(n)
Linked List $(2 \rightarrow 1 \rightarrow 3 \rightarrow 0)$	0(1)	O(n)	O(n)
Binary Tree 1 2 3	0(1)	O(n)	O(n)
BST (2) (1) 3	0(height)	0(height)	0(height)
RB Tree 2	$O(\log n)$	$O(\log n)$	$O(\log n)$

Application of Trees: Syntax Trees

- Most languages (natural and computer) have a recursive, hierarchical structure
- This structure is implicit in ordinary textual representation
- Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
- ASTs are easier to optimize, generate code from, etc. than textual representation
- A parser converts textual representations to AST

Applications of Trees: Syntax Trees

An expression as a tree.

Pre-order traversal:

- 1. Visit the root
- 2. Visit the left subtree (in pre-order)
- 3. Visit the right subtree

- * **2 1** + **1 0**

Pre-order traversal

Post-order traversal

- 1. Visit the left subtree (in post-order)
- 2. Visit the right subtree
- 3. Visit the root

- * 2 1 + 1 0 2 1 * 1 0 + -

Pre-order traversal

Post-order traversal

In-order traversal

- 1. Visit the left subtree (in-order)
- 2. Visit the root
- 3. Visit the right subtree

- * 2 1 + 1 0 2 1 * 1 0 + -2 * 1 - 1 + 0

Pre-order traversal- * 2 1 + 1 0Post-order traversal2 1 * 1 0 + -In-order traversal(2 * 1) - (1 + 0)

To avoid ambiguity, add parentheses around subtrees that contain operators.

Printing contents of BST (In-Order Traversal)

26

Because of ordering rules for a BST, it's easy to print the items in alphabetical order

- Recursively print left subtree
- Print the node
- Recursively print right subtree

/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
 if (t== null) return;
 print(t.left);
 System.out.print(t.value);
 print(t.right);
}

- Execute expressions in postfix notation by reading from left to right.
- Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

- Execute expressions in postfix notation by reading from left to right.
- Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

- Execute expressions in postfix notation by reading from left to right.
- □ Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

- Execute expressions in postfix notation by reading from left to right.
- Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

10 + -

- Execute expressions in postfix notation by reading from left to right.
- □ Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

- Execute expressions in postfix notation by reading from left to right.
- Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

- Execute expressions in postfix notation by reading from left to right.
- Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

- Execute expressions in postfix notation by reading from left to right.
- Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

In about 1974, Gries paid \$300 for an HP calculator, which had some memory and used postfix notation! Still works.

a.k.a. "reverse Polish notation"

- 35
- Function calls in most programming languages use prefix notation: like add(37, 5).
- Some languages (Lisp, Scheme, Racket) use prefix notation for everything to make the syntax simpler.

Iterator/Iterable

- 36
- There's a pair of Java interfaces designed to make data structures easy to traverse
- You could modify a tree to implement iterable, implement an (in-order, post-order, etc.) iterator and then use a for each loop to traverse the tree!
- In recitation this week, you will modify your linked list from A3 to implement iterable