

Announcements

\square Prelim 1 is Tonight, bring your student ID

- 5:30PM EXAM
- OLH155: netids starting a to dh
- OLH255: netids starting di to ji
\square PHL101: netids starting ii to ks (Plus students who switched from the 7:30 exam)
\square 7:30PM EXAM (314 Students)
- OLH1 55: netids starting kt to rz
- OLH255: netids starting sa to wl
\square PHL101: netids starting wm to zz (Plus students who switched from the 5:30 exam)

Comparing Data Structures

Datio Stiucture	add(val x)	lookup(int i)	search(val x)
$\begin{array}{\|l\|l\|l\|} \hline \text { Array } \\ \hline 2 & 1 & 3 \end{array}$	$O(n)$	$O(1)$	$O(n)$
$\begin{aligned} & \text { Linked List } \\ & (2) \rightarrow(1) \rightarrow(0) \rightarrow \end{aligned}$	$O(1)$	$O(n)$	$O(n)$
$\text { Binary Tree (2) } 1_{3}$	$O(1)$	$O(n)$	$O(n)$
BST (1) ${ }^{2}$	O(heig	$O(h e i g h t)$	O(height)

Binary Search Trees

Red-Black Trees

\square Self-balancing BST
\square Each node has one extra bit of information "color"
\square Constraints on how nodes can be colored enforces approximate balance

Red-Black Trees

A red-black tree is a binary search tree.
2) Every node is either red or black.
3) The root is black.
4) If a node is red, then its (non-null) children are black.
5) For each node, every path to a decendant null node contains the same number of black nodes.

RB Tree Quiz

\square Which of the following are red-black trees?

Class for a RBNode

class RBNode<T> \{ private T value; private Color color; private RBNode<T> parent; private RBNode<T> left, right;

Null if the node is the root of the tree.

Either might be null if the subtree is empty. /** Constructor: one-node tree with value x */ public RBNode (T v, Color c) \{ value= d; color= c; \}
\}

Insert

```
Insert(RBTree t, int v){
    Node p;
    Node n= t.root;
    while(n != null){
        p= n;
        if(v < n.value){n= n.left}
    else{n= n.right}
    }
    Node vnode= new Node(v, RED)
    if(p == NULL){
        t.root= vnode;
    } else if(v < p.value){
        p.left= vnode; vnode.parent= p;
    } else{
        p.right= vnode; vnode.parent= p;
    }
    fixTree(t, vnode);
}
```


fixTree

Case 1:
parent is black

Case 3: parent is red uncle is black node on inside

Case 2:
parent is red uncle is black node on outside

Case 4: parent is red uncle is red

Rotations

fixTree

```
fixTree(RBTree t, RBNode n){
    while(n.parent.color == RED){ // not Case 1
    if(n.parent.parent.right == n.parent){
        Node uncle = n.parent.parent.left;
        if(uncle.color == BLACK) { // Case 2 or 3
            if(n.parent.left == n) { rightRotate(n);} //3
            n.parent.color== BLACK;
            n.parent.parent.color= RED;
            leftRotate(n.parent.parent);
            } else { //uncle.color == RED // Case 4
            n.parent.color= BLACK;
            uncle.color= BLACK;
            n.parent.parent.color= RED;
            n= n.parent.parent;
        }
        } else {...} // n.parent.parent.left == n.parent
    }
    t.root.color == BLACK;// fix root

\section*{Search}
\(\square\) Red-black trees are a special case of binary search trees
\(\square\) Search works exactly the same as in any BST
\(\square\) Time: O(height)

\section*{What is the max height?}
\(\square\) Observation 1: Every binary tree must have a null node with depth \(\leq \log (n+1)\)


\section*{What is the max height?}
\(\square\) Observation 1: Every binary tree must have a null node with depth \(\leq \log (n+1)\)
\begin{tabular}{|c|c|}
\hline\(n\) & \(\log (n+1)\) \\
\hline 1 & 1 \\
\hline 2 & 1.584 \\
\hline 3 & 2 \\
\hline 4 & 2.321 \\
\hline 5 & 2.584 \\
\hline 6 & 2.807 \\
\hline 7 & 3 \\
\hline 8 & 3.169 \\
\hline 9 & 3.321 \\
\hline 10 & 3.249 \\
\hline
\end{tabular}


\section*{What is the max height?}
\(\square\) Observation 1: Every binary tree must have a null node with depth \(\leq \log (n+1)\)
\(\square\) Observation 2: In a red-black tree, the number of red nodes in a path from the root to a null node is less than or equal to the number of black nodes.


\section*{What is the max height?}
\(\square\) Observation 1: Every binary tree must have a null node with depth \(\leq \log (n+1)\)
\(\square\) Observation 2: In a red-black tree, the number of red nodes in a path from the root to a null node is less than or equal to the number of black nodes.
\(\square\) Observation 3: The maximum path length from the root to a null node is at most 2 times the minimum path length from the root to a null node.


\section*{What is the max height?}
\(\square\) Observation 1: Every binary tree must have a null node with depth \(\leq \log (n+1)\)
\(\square\) Observation 2: In a red-black tree, the number of red nodes in a path from the root to a null node is less than or equal to the number of black nodes.
\(\square\) Observation 3: The maximum path length from the root to a null node is at most 2 times the minimum path length from the root to a null node.
\(h=\max _{\text {root } \rightarrow \text { null }}\) path len \(\leq 2 \cdot \min _{\text {root } \rightarrow \text { null }}\) path len \(\leq 2 \log (n+1)\) \(h\) is \(O(\log n)\)

\section*{Comparing Data Structures}
\begin{tabular}{|c|c|c|c|}
\hline Data Stiucture & add(val x ) & lookup(int i) & search(val x ) \\
\hline \[
\begin{aligned}
& \text { Array } \\
& \begin{array}{|l|l|l|}
\hline 2 & 1 & 3
\end{array} \\
& \hline
\end{aligned}
\] & \(O(n)\) & \(O(1)\) & \(O(n)\) \\
\hline \[
\begin{aligned}
& \text { Linked List } \\
& (2) \rightarrow(1) \rightarrow(3) \rightarrow(0)
\end{aligned}
\] & \(O(1)\) & \(O(n)\) & \(O(n)\) \\
\hline \[
\text { Binary Tree (2) }{ }^{1}
\] & \(O(1)\) & \(O(n)\) & \(O(n)\) \\
\hline BST (1) (3) & \[
O(\text { height })
\] & \(O(h e i g h t)\) & \(O(\) height \()\) \\
\hline \[
\text { RB Tree } \left.{ }^{2}\right)^{2}
\] & \(O(\log n)\) & \(O(\log n)\) & \(O(\log n)\) \\
\hline
\end{tabular}

\section*{Application of Trees: Syntax Trees}
\(\square\) Most languages (natural and computer) have a recursive, hierarchical structure
\(\square\) This structure is implicit in ordinary textual representation
\(\square\) Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
\(\square\) ASTs are easier to optimize, generate code from, etc. than textual representation
\(\square\) A parser converts textual representations to AST

\section*{Applications of Trees: Syntax Trees}


An expression as a tree.

\section*{Pre-order, Post-order, and In-order}


Pre-order traversal:
1. Visit the root
2. Visit the left subtree (in pre-order)
- * \(21+10\)
3. Visit the right subtree

\section*{Pre-order, Post-order, and In-order}


Pre-order traversal
Post-order traversal
- * \(21+10\)
\(21 * 10+\) -
1. Visit the left subtree (in post-order)
2. Visit the right subtree
3. Visit the root

\section*{Pre-order, Post-order, and In-order}


Pre-order traversal
Post-order traversal
In-order traversal
- * \(21+10\)

21*10+-
2 * 1 - \(1+0\)
1. Visit the left subtree (in-order)
2. Visit the root
3. Visit the right subtree

\section*{Pre-order, Post-order, and In-order}

Pre-order traversal
Post-order traversal
In-order traversal
- * \(21+10\)
\(21 * 10+\) -
\((2 * 1)-(1+0)\)

To avoid ambiguity, add parentheses around subtrees that contain operators.

\section*{Printing contents of BST (In-Order Traversal)}

Because of ordering rules for a BST, it's easy to print the items in alphabetical order
\(\square\) Recursively print left subtree
\(\square\) Print the node
\(\square\) Recursively print right subtree
/** Print BST t in alpha order */
private static void print(TreeNode \(<\mathrm{T}>\mathrm{t})\) \{ if ( \(\mathrm{t}==\) null) return;
print(t.left);
System.out.print(t.value);
print(t.right);
\}

\section*{In Defense of Postfix Notation}
\(\square\) Execute expressions in postfix notation by reading from left to right.
\(\square\) Numbers: push onto the stack.
\(\square\) Operators: pop the operands off the stack, do the operation, and push the result onto the stack.


\section*{In Defense of Postfix Notation}
\(\square\) Execute expressions in postfix notation by reading from left to right.
\(\square\) Numbers: push onto the stack.
\(\square\) Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

\(1 * 10+-\)

\section*{In Defense of Postfix Notation}
\(\square\) Execute expressions in postfix notation by reading from left to right.
\(\square\) Numbers: push onto the stack.
\(\square\) Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

* 10 +

\section*{In Defense of Postfix Notation}
\(\square\) Execute expressions in postfix notation by reading from left to right.
\(\square\) Numbers: push onto the stack.
\(\square\) Operators: pop the operands off the stack, do the operation, and push the result onto the stack.


\section*{In Defense of Postfix Notation}
\(\square\) Execute expressions in postfix notation by reading from left to right.
\(\square\) Numbers: push onto the stack.
\(\square\) Operators: pop the operands off the stack, do the operation, and push the result onto the stack.


\section*{In Defense of Postfix Notation}
\(\square\) Execute expressions in postfix notation by reading from left to right.
\(\square\) Numbers: push onto the stack.
\(\square\) Operators: pop the operands off the stack, do the operation, and push the result onto the stack.


\section*{In Defense of Postfix Notation}
\(\square\) Execute expressions in postfix notation by reading from left to right.
\(\square\) Numbers: push onto the stack.
\(\square\) Operators: pop the operands off the stack, do the operation, and push the result onto the stack.


\section*{In Defense of Postfix Notation}
\(\square\) Execute expressions in postfix notation by reading from left to right.
\(\square\) Numbers: push onto the stack.
\(\square\) Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

In about 1974, Gries paid \(\$ 300\) for an HP calculator, which had some memory and used postfix notation! Still works.

a.k.a. "reverse Polish notation"

\section*{In Defense of Prefix Notation}
\(\square\) Function calls in most programming languages use prefix notation: like add \((37,5)\).
\(\square\) Some languages (Lisp, Scheme, Racket) use prefix notation for everything to make the syntax simpler.
(define (fib n)
(if (<= n 2)
1
(+ (fib (- n 1) (fib (- n 2)))))

\section*{Iterator/Iterable}
\(\square\) There's a pair of Java interfaces designed to make data structures easy to traverse
\(\square\) You could modify a tree to implement iterable, implement an (in-order, post-order, etc.) iterator and then use a for each loop to traverse the tree!
\(\square\) In recitation this week, you will modify your linked list from A3 to implement iterable```

