3/13/18

Announcements

==

o Prelim 1 is Tonight, bring your student ID
5:30PM EXAM
OLH155: netids starting aa to dh
OLH255: netids starting di to ji

PHL101: netids starting jj to ks (Plus students who switched
from the 7:30 exam)

7:30PM EXAM (314 Students)
OLH155: netids starting kt to rz
OLH255: netids starting sa to wl

PHL101: netids starting wm to zz (Plus students who switched
from the 5:30 exam)

Comparing Data Structures Binary Search Trees
]]

april

om 0w 0w
oo 0O 0m 0w

Binary Tree@‘QD\© 0 (1) 0 (n) 0 (n)

B (D/C%U(height) 0(height) 0(height)

Red-Black Trees Red-Black Trees
] | R
o Self-balancing BST 1) A red-black tree is a binary search tree.
0 Each node has one extra bit of information "color" 2y Every node is either red or black.
01 Constraints on how nodes can be colored enforces 3) The root is black.

approximate balance 4 If a node is red, then its (non-null) children are

black.
51 For each node, every path to a decendant null
node contains the same number of black nodes.

RB Tree Quiz

Which of the following are red-black trees?

A) B) Q) D)

YES NO YES NO

Class for a RBNode

class RBNode<T> {
private T value;

Null if the node is the
/ root of the tree.
private RBNode<T> parent; Either might be null if

private Color color;
private RBNode<T> left, right;—— the subtree is empty.

/** Constructor: one-node tree with value x */
public RBNode (T v, Color c) { value= d; color= c; }

Insert

Insert(RBTree t, int v){
Node p;
Node n= t.root;
while(n != null){
p=n;
if(v < n.value){n= n.left}
else{n= n.right}

Node vnode= new Node(v, RED)
if(p == NULL){
t.root= vnode;
} else if(v < p.value){
p.left= vnode; vnode.parent= p;
} else{
p.right= vnode; vnode.parent= p;

fixTree(t, vnode);

fixTree

Case 1: Case 2: Case 3: Case 4:
parent is black parent is red
uncle is black

parent is red parent is red

uncle is black uncle is red

node on outside node on inside

Rotations

fixTree

fixTree(RBTree t, RBNode n){
while(n.parent.color == RED){ // not Case 1
if(n.parent.parent.right == n.parent){

Node uncle = n.parent.parent.left;
if(uncle.color == BLACK) { // Case 2 or 3
if(n.parent.left == n) { rightRotate(n);} //3
n.parent.color== BLACK;
n.parent.parent.color= RED;
leftRotate(n.parent.parent);
else { //uncle.color == RED // Case 4
n.parent.color= BLACK;
uncle.color= BLACK;
n.parent.parent.color= RED;
n= n.parent.parent;

-

} else {...} // n.parent.parent.left == n.parent

t.root.color == BLACK;// fix root

¥

3/13/18

Search

]
0 Red-black trees are a special
case of binary search trees

o Search works exactly the
same as in any BST

0 Time: O (height)

What is the max height?
]

0 Observation 1: Every binary tree must have a null
node with depth < log(n + 1)

1
1.584

2.321
2.584
2.807

3.169
3.321
3.249

© ® N o O A W N =

)

What is the max height?

o Observation 1: Every binary tree must have a null
node with depth < log(n + 1)

o Observation 2: In a red-black tree, the number of
red nodes in a path from the root to a null node is
less than or equal to the number of black nodes.

o Observation 3: The maximum path length from the

root to a null node is at most 2 times the minimum
path length from the root to a null node.

What is the max height?
]

o Observation 1: Every binary tree must have a null
node with depth < log(n + 1)

What is the max height?

o Observation 1: Every binary tree must have a null
node with depth < log(n + 1)

o Observation 2: In a red-black tree, the number of
red nodes in a path from the root to a null node is
less than or equal to the number of black nodes.

What is the max height?

o Observation 1: Every binary tree must have a null
node with depth < log(n + 1)

0 Observation 2: In a red-black tree, the number of
red nodes in a path from the root to a null node is
less than or equal to the number of black nodes.

o Observation 3: The maximum path length from the
root to a null node is at most 2 times the minimum
path length from the root to a null node.

h= max pathlen<2- min
root—-null root-nul

lpath len < 2log(n+1)

his O(logn)

3/13/18

Comparing Data Structures
| o]
AlEE o) oy om
Linked List
e O o(n) o(n)
Binary Tree 0(1) O(n) O(TL)
B (D/C%U(height) 0(height) 0(height)
RE Tree afe\e O(logn) O(logn) 0(logn)
Applications of Trees: Syntax Trees
==
“parsing”
2%1-(1+8) s N,
VRN N
A Java expression as a string. 2 1 1 0
An expression as a tree.
Pre-order, Post-order, and In-order
2]
*/ \ N
VRN
2 1 RN
Pre-order traversal -%*21+10
Post-order traversal 21 %10+ -

1. Visit the left subtree (in post-order)
2. Visit the right subtree
3. Visit the root

3/13/18

Application of Trees: Syntax Trees
| 2]
0 Most languages (natural and computer) have a
recursive, hierarchical structure
o This structure is implicit in ordinary textual
representation
01 Recursive structure can be made explicit by
representing sentences in the language as trees:
Abstract Syntax Trees (ASTs)
0 ASTs are easier to optimize, generate code from, etc.
than textual representation
0 A parser converts textual representations to AST
Pre-order, Post-order, and In-order
==
* — \ +
VAN e
2 1 RN

Pre-order traversal:

1. Visit the root

2. Visit the left subtree (in pre-order)
3. Visit the right subtree

- % 21+10

Pre-order, Post-order, and In-order

==
N
2 ah 1 1 RN 0
Pre-order traversal -*21+10
Post-order traversal 21 %10+ -
In-order traversal 2%1-1+0

1. Visit the left subtree (in-order)
2. Visit the root
3. Visit the right subtree

Pre-order, Post-order, and In-order

=
N
2 ah 1 1 RN 0
Pre-order traversal -*21+10
Post-order traversal 21 %10+ -
In-order traversal 2*1)-(1+0)

To avoid ambiguity, add parentheses around
subtrees that contain operators.

In Defense of Postfix Notation

iz
0 Execute expressions in postfix notation by reading
from left to right.

01 Numbers: push onto the stack.

o Operators: pop the operands off the stack, do the
operation, and push the result onto the stack.

21*%10+-

In Defense of Postfix Notation

2]
0 Execute expressions in postfix notation by reading
from left to right.

01 Numbers: push onto the stack.

o Operators: pop the operands off the stack, do the
operation, and push the result onto the stack.

*10+-

Because of ordering
rules for a BST, it’s easy |private static void print(TreeNode<T> t) {
to print the items in

Printing contents of BST (In-Order Traversal)

/** Print BST t in alpha order */

if (t== null) return;

alphabetical order print(t.left);
Recursively print System.out.print(t.value);
left subtree print(t.right);

Print the node }
Recursively print

right subtree

In Defense of Postfix Notation

0 Execute expressions in postfix notation by reading
from left to right.

o Numbers: push onto the stack.

o1 Operators: pop the operands off the stack, do the
operation, and push the result onto the stack.

1*10+-

In Defense of Postfix Notation

0 Execute expressions in postfix notation by reading
from left to right.

o1 Numbers: push onto the stack.

o1 Operators: pop the operands off the stack, do the
operation, and push the result onto the stack.

10+-

3/13/18

In Defense of Postfix Notation

Execute expressions in postfix notation by reading
from left to right.

Numbers: push onto the stack.

Operators: pop the operands off the stack, do the
operation, and push the result onto the stack.

In Defense of Postfix Notation

Execute expressions in postfix notation by reading
from left to right.

Numbers: push onto the stack.

Operators: pop the operands off the stack, do the
operation, and push the result onto the stack.

In Defense of Postfix Notation

Execute expressions in postfix notation by reading
from left to right.

Numbers: push onto the stack.

Operators: pop the operands off the stack, do the
operation, and push the result onto the stack.

In Defense of Postfix Notation

Execute expressions in postfix notation by reading
from left to right.

Numbers: push onto the stack.

Operators: pop the operands off the stack, do the
operation, and push the result onto the stack.

In about 1974, Gries paid
$300 for an HP calculator, [#58
which had some memory
and used postfix notation!

il vy a.k.a. “reverse Polish notation”

In Defense of Prefix Notation

Function calls in most programming languages use
prefix notation: like add(37, 5).

Some languages (Lisp, Scheme, Racket) use prefix
notation for everything to make the syntax simpler.

(define (fib n)
(if (<= n 2)
1
(+ (fib (- n 1) (fib (- n 2)))))

lterator /Iterable

There's a pair of Java interfaces designed to make
data structures easy to traverse

You could modify a tree to implement iterable,
implement an (in-order, post-order, etc.) iterator
and then use a for each loop to traverse the tree!
In recitation this week, you will modify your linked
list from A3 to implement iterable

3/13/18

