
3/13/18

1

Lecture 12
CS2110 – Spring 2018TREES II

Announcements

¨ Prelim 1 is Tonight, bring your student ID
¤ 5:30PM EXAM

¤ OLH155: netids starting aa to dh

¤ OLH255: netids starting di to ji
¤ PHL101: netids starting jj to ks (Plus students who switched

from the 7:30 exam)

¤ 7:30PM EXAM (314 Students)

¤ OLH155: netids starting kt to rz

¤ OLH255: netids starting sa to wl
¤ PHL101: netids starting wm to zz (Plus students who switched

from the 5:30 exam)

2

Binary Tree

BST

Comparing Data Structures

Data Structure add(val x) lookup(int i)

Array

Linked List

3

2 1 3 0

2 1 3 0

𝑂(𝑛) 𝑂(1)

𝑂(𝑛)𝑂(1)

search(val x)

𝑂(𝑛)

𝑂(𝑛)
1

2 3 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)
2

1 3 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡) 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡) 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡)

Binary Search Trees
4

april

august

december

february

january

january

february march

april mayjune

julyaugust september

october

november

december

Red-Black Trees

¨ Self-balancing BST
¨ Each node has one extra bit of information "color"
¨ Constraints on how nodes can be colored enforces

approximate balance

5

1

3

52

0

Red-Black Trees

1) A red-black tree is a binary search tree.
2) Every node is either red or black.
3) The root is black.
4) If a node is red, then its (non-null) children are

black.
5) For each node, every path to a decendant null

node contains the same number of black nodes.

6

3/13/18

2

RB Tree Quiz

¨ Which of the following are red-black trees?

7

1

3

52

0

6

1

30

1

3

52

0

6

A) B) C)1

3

2

0

D)

YES NO YES NO

4

8

class RBNode<T> {
private T value;
private Color color;
private RBNode<T> parent;
private RBNode<T> left, right;

/** Constructor: one-node tree with value x */
public RBNode (T v, Color c) { value= d; color= c; }

...
}

Null if the node is the
root of the tree.

Class for a RBNode

Either might be null if
the subtree is empty.

Insert

Insert(RBTree t, int v){
Node p;
Node n= t.root;
while(n != null){
p= n;
if(v < n.value){n= n.left}
else{n= n.right}

}
Node vnode= new Node(v, RED)
if(p == NULL){
t.root= vnode;

} else if(v < p.value){
p.left= vnode; vnode.parent= p;

} else{
p.right= vnode; vnode.parent= p;

}
fixTree(t, vnode);

}

9

1

3

52

0

6

n
p

8

fixTree
10

3

52

4

53

6 6

5

4

3

6

4

5

4

3

52

Case 1:
parent is black

Case 2:
parent is red
uncle is black
node on outside

Case 3:
parent is red
uncle is black
node on inside

Case 4:
parent is red
uncle is red

Rotations
11

p

n

210

p

n

210

leftRotate

rightRotate

fixTree
12

fixTree(RBTree t, RBNode n){
while(n.parent.color == RED){ // not Case 1
if(n.parent.parent.right == n.parent){
Node uncle = n.parent.parent.left;
if(uncle.color == BLACK) { // Case 2 or 3
if(n.parent.left == n) { rightRotate(n);} //3
n.parent.color== BLACK;
n.parent.parent.color= RED;
leftRotate(n.parent.parent);

} else { //uncle.color == RED // Case 4
n.parent.color= BLACK;
uncle.color= BLACK;
n.parent.parent.color= RED;
n= n.parent.parent;

}
} else {...} // n.parent.parent.left == n.parent

}
t.root.color == BLACK;// fix root

}

3/13/18

3

Search

¨ Red-black trees are a special
case of binary search trees

¨ Search works exactly the
same as in any BST

¨ Time: 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡)

13

1

3

52

0

6

What is the max height?

¨ Observation 1: Every binary tree must have a null
node with depth ≤ log 𝑛 + 1

14

What is the max height?

¨ Observation 1: Every binary tree must have a null
node with depth ≤ log 𝑛 + 1

15

n log(n+1)

1 1

2 1.584

3 2

4 2.321

5 2.584

6 2.807

7 3

8 3.169

9 3.321

10 3.249

1

2 3

3 5 6 74

What is the max height?

¨ Observation 1: Every binary tree must have a null
node with depth ≤ log 𝑛 + 1

¨ Observation 2: In a red-black tree, the number of
red nodes in a path from the root to a null node is
less than or equal to the number of black nodes.

16

5

3

1

What is the max height?

¨ Observation 1: Every binary tree must have a null
node with depth ≤ log 𝑛 + 1

¨ Observation 2: In a red-black tree, the number of
red nodes in a path from the root to a null node is
less than or equal to the number of black nodes.

¨ Observation 3: The maximum path length from the
root to a null node is at most 2 times the minimum
path length from the root to a null node.

17

1

1

1

What is the max height?

¨ Observation 1: Every binary tree must have a null
node with depth ≤ log 𝑛 + 1

¨ Observation 2: In a red-black tree, the number of
red nodes in a path from the root to a null node is
less than or equal to the number of black nodes.

¨ Observation 3: The maximum path length from the
root to a null node is at most 2 times the minimum
path length from the root to a null node.

18

ℎ = max
4556→89::

𝑝𝑎𝑡ℎ	𝑙𝑒𝑛 ≤ 2 ⋅ min
4556→89::

𝑝𝑎𝑡ℎ	𝑙𝑒𝑛 ≤ 2	log	(𝑛 + 1)

ℎ	is	𝑂(log 𝑛)

3/13/18

4

RB Tree

Binary Tree

BST

Comparing Data Structures

Data Structure add(val x) lookup(int i)

Array

Linked List

19

2 1 3 0

2 1 3 0

𝑂(𝑛) 𝑂(1)

𝑂(𝑛)𝑂(1)

search(val x)

𝑂(𝑛)

𝑂(𝑛)
1

2 3 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)
2

1 3 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡) 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡) 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡)
2

1 3 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛)

Application of Trees: Syntax Trees
20

¨ Most languages (natural and computer) have a
recursive, hierarchical structure

¨ This structure is implicit in ordinary textual
representation

¨ Recursive structure can be made explicit by
representing sentences in the language as trees:
Abstract Syntax Trees (ASTs)

¨ ASTs are easier to optimize, generate code from, etc.
than textual representation

¨ A parser converts textual representations to AST

Applications of Trees: Syntax Trees
21

2 * 1 – (1 + 0)

A Java expression as a string.

An expression as a tree.

“parsing”

-
*

2 1
+

1 0

Pre-order, Post-order, and In-order
22

-
*

2 1
+

1 0

Pre-order traversal:
1. Visit the root
2. Visit the left subtree (in pre-order)
3. Visit the right subtree

- * 2 1 + 1 0

Pre-order, Post-order, and In-order
23

-
*

2 1
+

1 0

Post-order traversal
1. Visit the left subtree (in post-order)
2. Visit the right subtree
3. Visit the root

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + -

Pre-order, Post-order, and In-order
24

-
*

2 1
+

1 0

Post-order traversal

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + -

In-order traversal
1. Visit the left subtree (in-order)
2. Visit the root
3. Visit the right subtree

2 * 1 - 1 + 0

3/13/18

5

Pre-order, Post-order, and In-order
25

-
*

2 1
+

1 0

Post-order traversal

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + -

In-order traversal (2 * 1) - (1 + 0)

To avoid ambiguity, add parentheses around
subtrees that contain operators.

Printing contents of BST (In-Order Traversal)
26

Because of ordering
rules for a BST, it’s easy
to print the items in
alphabetical order

¤Recursively print
left subtree

¤Print the node
¤Recursively print

right subtree

/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {

if (t== null) return;
print(t.left);
System.out.print(t.value);
print(t.right);

}

In Defense of Postfix Notation
27

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

2 1 * 1 0 + -

In Defense of Postfix Notation
28

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

1 * 1 0 + -

2

In Defense of Postfix Notation
29

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

* 1 0 + -

2
1

In Defense of Postfix Notation
30

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

1 0 + -

2

3/13/18

6

In Defense of Postfix Notation
31

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

+ -

2
1
0

In Defense of Postfix Notation
32

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

-

2
1

In Defense of Postfix Notation
33

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

1

In Defense of Postfix Notation
34

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

2

In about 1974, Gries paid
$300 for an HP calculator,
which had some memory
and used postfix notation!
Still works. a.k.a. “reverse Polish notation”

In Defense of Prefix Notation
35

¨ Function calls in most programming languages use
prefix notation: like add(37, 5).

¨ Some languages (Lisp, Scheme, Racket) use prefix
notation for everything to make the syntax simpler.

(define (fib n)
(if (<= n 2)

1
(+ (fib (- n 1) (fib (- n 2)))))

Iterator/Iterable

¨ There's a pair of Java interfaces designed to make
data structures easy to traverse

¨ You could modify a tree to implement iterable,
implement an (in-order, post-order, etc.) iterator
and then use a for each loop to traverse the tree!

¨ In recitation this week, you will modify your linked
list from A3 to implement iterable

36

