

Announcements

Prelim 1 is Tonight, bring your student ID

5:30PM EXAM

- OLH155: netids starting aa to dh
- OLH255: netids starting di to ji
- PHL101: netids starting jj to ks (Plus students who switched from the 7:30 exam)

7:30PM EXAM (314 Students)

- OLH155: netids starting kt to rz
- OLH255: netids starting sa to wl
- PHL101: netids starting wm to zz (Plus students who switched from the 5:30 exam)

Comparing [Data St	tructure	S
Data Structure	add(val x)	lookup(int i)	search(val x)
Array	0(n)	0(1)	0(n)
Linked List $(2 \rightarrow (1 \rightarrow (3 \rightarrow (0 \rightarrow (1 \rightarrow (3 \rightarrow (1 \rightarrow (1 \rightarrow (1 \rightarrow (1 \rightarrow (1 \rightarrow (1$	0(1)	0(n)	0(n)
Binary Tree (1) (2) (3)	0(1)	0(n)	0(n)
BST (1) (3)	0(height)	0(height)	0(height)
0 0			

Red-Black Trees Self-balancing BST Each node has one extra bit of information "color"

- Constraints on how nodes can be colored enforces
- approximate balance

Red-Black Trees

- 1) A red-black tree is a binary search tree.
- 2) Every node is either red or black.
- 3) The root is black.
- 4) If a node is red, then its (non-null) children are black.
- For each node, every path to a decendant null 5) node contains the same number of black nodes.

What is the max height? Image: Second structure of the second struc

Data Structureadd(val x)lookup(int i)search(val x) $\frac{Array}{2 1 3 0}$ $O(n)$ $O(1)$ $O(n)$ $\lim ked List$ $O(n)$ $O(1)$ $O(n)$ $2 0 0$ $3 0$ $O(1)$ $O(n)$ $Binary Tree$ $1 3 0$ $O(1)$ $O(n)$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$	Comparing Data Structures					
Array [2]]30 $O(n)$ $O(1)$ $O(n)$ Linked List (2) $\rightarrow 0$ $O(1)$ $O(n)$ $O(n)$ Binary Tree (2) $\rightarrow 0$ $O(1)$ $O(n)$ $O(n)$ BST (1) $\rightarrow 0$ $O(height)$ $O(height)$ $O(height)$	19					
$\begin{array}{c c} \hline 2 \hline 1 \hline 3 \hline 0 \\ \hline 1 \hline 1 \hline 1 \hline 0 \\ \hline 1 \hline 1 \hline 1 \hline 0 \\ \hline 1 \hline 1 \hline 1 \hline 0 \\ \hline 1 \hline 1 \hline 1 \hline 1 \hline 0 \\ \hline 1 \hline$	Data Structure	add(val x)	lookup(int i)	search(val x)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0(n)	0(1)	O(n)		
$\begin{array}{c} 2 \\ \hline 2 \\ \hline 3 \\ \hline 0 \\ \hline$		0(1)	0(n)	0(n)		
() (height) (height) (height)	Binary Tree 1	0(1)	0(n)	0(n)		
RB Tree $0(\log n)$ $0(\log n)$ $0(\log n)$	BST 1 3	0(height)	0(height)	0(height)		
	RB Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$		

²⁶ Because of ordering	<pre>of BST (In-Order Traversal) /** Print BST t in alpha order */ private static void print(TreeNode<t> t) { if (t== null) return; print(t.left); System.out.print(t.value); print(t.right); }</t></pre>
-----------------------------------	---

In Defense of Postfix Notation

- Execute expressions in postfix notation by reading from left to right.
- □ Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

In Defense of Postfix Notation Execute expressions in postfix notation by reading from left to right. Numbers: push onto the stack. Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

In Defense of Prefix Notation Function calls in most programming languages use prefix notation: like add(37, 5). Some languages (Lisp, Scheme, Racket) use prefix notation for everything to make the syntax simpler. (define (fib n) (if (<= n 2) 1 (+ (fib (- n 1) (fib (- n 2)))))

lterator/lterable

- There's a pair of Java interfaces designed to make data structures easy to traverse
- You could modify a tree to implement iterable, implement an (in-order, post-order, etc.) iterator and then use a for each loop to traverse the tree!
- In recitation this week, you will modify your linked list from A3 to implement iterable