Important Announcements

- A4 is out now and due two weeks from today. Have fun, and start early!
There are different ways of storing data, called data structures.

Each data structure has operations that it is good at and operations that it is bad at.

For any application, you want to choose a data structure that is good at the things you do often.
Example Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(val x)</th>
<th>lookup(int i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array
2 1 3 0</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Linked List
② ① ③ ③ 0</td>
<td>(O(1))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>
The Problem of Search
Example Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(val x)</th>
<th>lookup(int i)</th>
<th>search(val x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Array [2 1 3 0]</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Linked List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Linked List [2 → 1 → 3 → 0]</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Tree

Singly linked list:

Node object

pointer

int value

Today: trees!
Tree Overview

Tree: data structure with nodes, similar to linked list

- Each node may have zero or more successors (children)
- Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root
Tree Terminology

- **the root of the tree** (no parents)
- **child of M**
- **the leaves of the tree** (no children)
Tree Terminology

ancestors of B

descendants of W
Tree Terminology

A subtree of M is shown in the diagram.
A node’s *depth* is the length of the path to the root. A tree’s (or subtree’s) *height* is the length of the longest path from the root to a leaf.

Depth 1, height 2.

Depth 3, height 0.
Multiple trees: a forest.
Class for general tree nodes

```java
class GTreeNode<T> {
    private T value;
    private List<GTreeNode<T>> children;
    //appropriate constructors, getters, setters, etc.
}
```

Parent contains a list of its children
Class for general tree nodes

```java
class GTreeNode<T> {
    private T value;
    private List<GTreeNode<T>> children;
    //appropriate constructors, getters, setters, etc.
}
```

Java.util.List is an interface!
It defines the methods that all implementation must implement.
Whoever writes this class gets to decide what implementation to use — ArrayList? LinkedList? Etc.?
A binary tree is a particularly important kind of tree where every node has at most two children.

In a binary tree, the two children are called the left and right children.
Binary trees were in A1!

You have seen a binary tree in A1.

A PhD object has one or two advisors. (Confusingly, the advisors are the “children.”)

```
       David Gries
         /           \
    Friedrich Bauer
     /               \
Fritz Bopp   Georg Aumann
  /     \       /     \    
Fritz Sauter Erwin Fues Heinrich Tietze Constantin Carathodory
```
class TreeNode<T> {
 private T value;
 private TreeNode<T> left, right;

 /** Constructor: one-node tree with datum x */
 public TreeNode (T d) { datum= d; left= null; right= null; }

 /** Constr: Tree with root value x, left tree l, right tree r */
 public TreeNode (T d, TreeNode<T> l, TreeNode<T> r) {
 datum= d; left= l; right= r;
 }
}

Either might be null if the subtree is empty.

more methods: getValue, setValue, getLeft, setLeft, etc.
Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the right subtree:

- One or both could be `null`, meaning the subtree is empty
 (remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes (and they need not be ordered)

- Very useful in some situations ...
- ... one of which may be in an assignment!
A binary tree is either null or an object consisting of a value, a left binary tree, and a right binary tree.
Looking at trees recursively

Binary tree

Left subtree, which is a binary tree too

Right subtree (also a binary tree)
Looking at trees recursively

a binary tree
Looking at trees recursively
Looking at trees recursively
A Recipe for Recursive Functions

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.
Recursive Functions on Binary Trees

Base case:
- empty tree (null)
- or, possibly, a leaf

Recursive case:
- Call the function on each subtree.
- Use the recursive result to build a solution for the full input.
Searching in a Binary Tree

```java
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
    if (t == null) return false;
    if (x.equals(t.datum)) return true;
    return treeSearch(x, t.left) || treeSearch(x, t.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively
Searching in a Binary Tree

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.datum)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

VERY IMPORTANT!
We sometimes talk of t as the root of the tree.
But we also use t to denote the whole tree.
Comparing Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(val x)</th>
<th>lookup(int i)</th>
<th>search(val x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Linked List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Binary Tree</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
A binary search tree is a binary tree that is **ordered** and **has no duplicate values**. In other words, for every node:

- All nodes in the **left** subtree have values that are **less** than the value in that node, and
- All values in the **right** subtree are **greater**.

A BST is the key to making search way faster.
Building a BST

- To insert a new item:
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree
Building a BST

january
Building a BST

january
Building a BST

january

february
Building a BST

- January
- February
Building a BST

january

february
Building a BST

- January
 - February
 - March
Building a BST

january

February

March
Building a BST

january

february
march
april
Building a BST

january

april february march
Building a BST

january

february march

april
Building a BST

January

February

March

April
Building a BST

january

february

april

generated

august

december

march

june

july

may

september

october

november
Because of ordering rules for a BST, it’s easy to print the items in alphabetical order:

- Recursively print left subtree
- Print the node
- Recursively print right subtree

```java
/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
    if (t == null) return;
    print(t.left);
    System.out.print(t.value);
    print(t.right);
}
```
“Walking” over the whole tree is a **tree traversal**

- **Done** often enough that there are standard names

Previous example:

in-order traversal

- **Process left subtree**
- **Process root**
- **Process right subtree**

Note: Can do other processing besides printing

Other standard kinds of traversals

- **preorder traversal**
 - **Process root**
 - **Process left subtree**
 - **Process right subtree**

- **postorder traversal**
 - **Process left subtree**
 - **Process right subtree**
 - **Process root**

- **level-order traversal**
 - **Not recursive**: uses a queue (we’ll cover this later)
Binary Search Tree (BST)

```java
boolean searchBST(n, v):
    if n==null, return false
    if n.v == v, return true
    if v < n.v
        return searchBST(n.left, v)
    else
        return searchBST(n.right, v)
```

```java
boolean searchBT(n, v):
    if n==null, return false
    if n.v == v, return true
    return searchBST(n.left, v) || searchBST(n.right, v)
```

Compare binary tree to binary search tree:

- `searchBST(n, v)` makes 2 recursive calls.
- `searchBT(n, v)` makes 1 recursive call.
Comparing Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(val x)</th>
<th>lookup(int i)</th>
<th>search(val x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>![Array Diagram](2 1 3 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>![Linked List Diagram](2 -> 1 -> 3 -> 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Tree</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>![Binary Tree Diagram](2 -> 1 -> 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>$O(depth)$</td>
<td>$O(depth)$</td>
<td>$O(depth)$</td>
</tr>
<tr>
<td>![BST Diagram](1 -> 2 -> 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inserting in Alphabetical Order

April
Inserting in Alphabetical Order

april
Inserting in Alphabetical Order

april august
Inserting in Alphabetical Order

- April
- August
Inserting in Alphabetical Order

- April
- August
- December
Inserting in Alphabetical Order

january

february

december

august

april
A balanced binary tree is one where the two subtrees of any node are about the same size.

Searching a binary search tree takes $O(h)$ time, where h is the height of the tree.

In a balanced binary search tree, this is $O(\log n)$.

But if you insert data in sorted order, the tree becomes imbalanced, so searching is $O(n)$.
What if we want to delete data from a BST?

A BST works great as long as it’s balanced.

There are kinds of trees that can automatically keep themselves balanced as you insert things!
Useful facts about binary trees

Max # of nodes at depth d: \(2^d\)

If height of tree is \(h\)
- min # of nodes: \(h + 1\)
- max # of nodes in tree:
 \(2^0 + \ldots + 2^h = 2^{h+1} - 1\)

Complete binary tree
- All levels of tree down to a certain depth are completely filled