"Organizing 1s what you do before you do something,

so that when you do it, it is not all mixed up."
~A. A. Milne

SORTING




Prelim 1

It's on Tuesday Evening (3/13)

Two Sessions:
5:30-7:00PM: netid aa..ks
/:30-9:00PM: netid kt..zz

If you have a conflict with your assigned time but can

make the other time, fill out conflict assignment on CMS
BY TOMORROW

Three Rooms:
We will email you Tuesday morning with your room

Bring your Cornell ID!!!



Prelim 1

Recitation 5: prelim review

Review Session: Sunday 3/11, 1-3pm in Kimball B11

Study guide on course website



Why Sorting?

Sorting is useful
Database indexing
Operations research

Compression

There are lots of ways to sort
There isn't one right answer

You need to be able to figure out the options and
decide which one is right for your application.

Today, we'll learn about several different algorithms
(and how to derive them)



Some Sorting Algorithms
T
1 Insertion sort
1 Selection sort
-1 Merge sort

1 Quick sort



InsertionSort

0

pre: b

0

b.length

1

inv: b

sorted

?

or: b[0..1-1] 1s sorted

post: b

b.length

b.length

sorted

A loop that processes
clements of an array
in 1ncreasing order
has this invariant




Each iteration, i= i+l; How to keep inv true?

0 1 b.length
inv: b sorted ?

0 1 b.length
€g9. b|2 555 7|3 ?

0 1 b.length
b|2 3555 7 ?




What to do in each iteration?

0 1 b.length
inv: b sorted ?
0 1 b.length
e€g. b|2 555 7|3 ?
1255537 9 Push b[i] to its
Loop rted position
body | |2 55357 2 SOTEE D
(inv true — in b[0..1], then
before 2535 5|7 7 increase 1
and after) ] 2355 5|7 9

This will take time proportional to the number of swaps needed
b|23 555 7] ? |




Insertion Sort

// sort b[], an array of int

// inv: b[0..1-1] 1s sorted

for (int 1= 0; 1 < b.length; 1=1+1) {
// Push b[1] down to 1ts sorted

// position 1n b[O0..1] \

Present algorithm like this

Note English statement
in body.

Abstraction. Says what
to do, not how.

This 1s the best way to
present 1it. We expect
you to present it this

way when asked.

Later, can show how to
implement that with an
inner loop



Insertion Sort

// sort b[], an array of int invariant P: b[0..1] 1s sorted
// inv: b[0..i-1] is sorted except that b[k] may be < b[k-1]
for (int i= 0; 1 < b.length; i=1+1) { k 1
// Pus.h'b[i]. down .to its sorted 275 35 5|7 9
// position in b[O0..1]
example
int k=1; start?
while (k>0 && b[k] <b[k-1]) { '
Swap b[k] and b[k-1] stop?
\ k=k-1; progress?
maintain

h invariant?




Insertion Sort

// sort b[], an array of int

// 1nv: b[0..1-1] 15 sorted

for (int 1= 0; 1 < b.length; 1=1+1) {
// Push b[1] down to 1ts sorted
// position 1n b[0..1]}

Pushing b[1] down can take 1 swaps.
Worst case takes

1 +2+3 + ... n-1 = (n-1)*n/2

Swaps.

Let n = b.length

* Worst-case: O(n?)
(reverse-sorted input)

e Best-case: O(n)
(sorted input)

* Expected case: O(n?)



Performance
e e

mmm

Insertion Sort 0(n) to 0(n?) 0(1)
Selection Sort 0(n?) 0(1) No
Merge Sort

Quick Sort



SelectionSort

0 b.length 0 b.length
pre: b ? post: b | sorted

0 i b.length
inv: b | sorted , <=b[i..] | >=Db[0..i-1] Additional term

1n 1nvariant

Keep invariant true while making progress?
0 1 b.length

eg:b| 123 456[(99978609

Increasing 1 by 1 keeps inv true only 1f b[1] 1s min of b[1..]



SelectionSort

//sort b[], an array of int Another common way for

// inv: b[0..i-1] sorted AND people to sort cards

// b[0..i-1] <= bl[i..]

for (int 1= 0; 1 < b.length; 1= 1+1) {
int m= index of minimum of b[i..];

Swap b[1] and b[m];

Runtime
with n = b.length

=\Worst-case O(n?)
= Best-case O(n?)
» Expected-case O(n?)

;

0 1 length
b | sorted, smaller values larger values

S

Each iteration, swap min value of this section into b[i]




Performance
el e

mmm

Insertion Sort 0(n) to 0(n?) 0(1)
Selection Sort 0(n?) 0(1) No
Merge Sort

Quick Sort



Merge two adjacent sorted segments

/* Sort b[h. k]. Precondition: b[h..t] and b[t+1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {

sorted sorted

b|3|41(4|7|71|7|8|8]9 merged, sorted




Merge two adjacent sorted segments

/* Sort b[h. k]. Precondition: b[h..t] and b[t+1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {
Copy b[h..t] into a new array c;

Merge ¢ and b[t+1..k] into b[h..k];
! h t k

sorted sorted

merged, sorted




Merge two adjacent sorted segments

X, y are sorted

// Merge sorted ¢ and b[t+1..k] into b[h..k]
0 th h t k
pre: C X b ? y
h k
post: b| x andy, sorted
invariant: 0 i c.length
’ head of x | tail of x
h u \% k
b A ? tail of y

head of x and head of y, sorted



Merge

inti=0;
int u = h;
int v=t+1;
while( 1 <= t-h){
if(v <k && b[v] <c[i]) {

b[u] = b[v];
u++; v+,
telse {
blu] = cfi];
ut+; 1++;
h
h

0 t-h h t

pre: ¢| sorted | b| ?

sorted

h

post: b

sorted

nv: 0

c.length

C| sorted

sorted

h

b| sorted

sorted




Mergesort

/%% Sort bh..k] */

public static void mergesort(int[] b, int h, int k]) {

if (size b[h..k] < 2)
return;

int t= (h+k)/2;

mergesort(b, h, t);

mergesort(b, t+1, k);

merge(b, h, t, k);

sorted

sorted

h

merged, sorted




Performance
e

mmm

Insertion Sort 0(n) to 0(n?) 0(1)
Selection Sort 0(n?) 0(1) No
Merge Sort n log(n) 0o(n) Yes

Quick Sort



QuickSort

Quicksort developed by Sir Tony Hoare (he was
knighted by the Queen of England for his
contributions to education and CS).

83 years old.

Developed Quicksort in 1958. But he could not
explain 1t to his colleague, so he gave up on it.

Later, he saw a draft of the new language Algol 58 (which became
Algol 60). It had recursive procedures. First time in a procedural
programming language. “Ah!,” he said. “I know how to write it
better now.” 15 minutes later, his colleague also understood it.



Partition algorithm of quicksort

pre:

h h+1

x 1s called
the pivot

Swap array values around until b[h..k] looks like this:

post:

h

k

<=X

>= X




Partition algorithm of quicksort

20 31| 241 19(45 |56 |4 |20 5 |72 ({14 |99

/ partition

pivot j

191 4 | 5 (14| 20|31(24 (4556|201 72|99
Not yet Not yet
sorted sorted
these can be these can be
in any order in any order The 20 could

be in the other
partition



Partition algorithm

pre: b

post: p

h

h+1

X

h

<=X

>= X

Combine pre and post to get an invariant

]

t

X

Invariant
needs at
least 4
sections



Partition algorithm

h j t k
<=xX x| 2 >=x Initially, with j=h
and t = k, this
7= h; t=k; diagram looks like
while (j <t) { the start diagram

if (b[j+1] <= b[j]) {
Swap b[j+1] and b[j]; j=j+1;

} else {
Swap b[j+1] and b[t]; t=t-1; Terminate when j =t,
! so the “?” segment 1s
! empty, so diagram

looks like result
Takes linear time: O(k+1-h) diagram



QuickSort procedure

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
if (b[h..k] has <2 elements) return; Base case
int j= partition(b, h, k);
// We know b[h..j—1] <= b[j] <=Db[j+1..k]
// Sort b[h..jJ-1] and b[j+1..k]  Function does the

QS(b, h, j-1); partition algorithm and
QS(b, eri] k),~ returns position j of pivot
h
h j k

<=X X >= X




Worst case quicksort: pivot always smallest value

J
x0 >= x(
J
x0| x1 >=x1
J
x0| x1| x2 >= X2

/%% Sort b[h..k]. */

public static void QS(int[] b, int h, int k) {
if (b[h..k] has <2 elements) return,;

int j= partition(b, h, k);

QS(b, h» j'l);

QS(b, j*+1, k);

partioning at depth 0

partioning at depth 1

partioning at depth 2

Depth of
recursion: O(n)

Processing at
depth 1: O(n-1)

O(n*n)




Best case quicksort: pivot always middle value

0 ] n
<= x0 <0 ~— %0 d§pth 0.1 segr.n.ent of
s1ze ~n to partition.
<=x1 |x1| >=x1[x0|<=x2 |x2 [>=x2 Depth 2. 2 segments of

size ~n/2 to partition.

Depth 3. 4 segments of
size ~n/4 to partition.

Max depth: O(log n). Time to partition on each level: O(n)
Total time: O(n log n).

Average time for Quicksort: n log n. Difficult calculation



QuickSort complexity to sort array of length n

Time complexity
Worst-case: O(n*n)
/** Sort b[h..k]. */ Average-case: O(n log n)
public static void QS(int[] b, int h, int k) {
if (b[h..k] has < 2 elements) return;
int j= partition(b, h, k);
// We know b[h..j—1] <=Db[j] <=b[j+1..k]

// Sort b[h..J-1] and b[j+1..k] Worst-case space: ?
QS(b, h, j-1); What’s depth of recursion?

QS(b, j+1, k); Worst-case space: O(n)!

h --depth of recursion can be n
Can rewrite it to have space O(log n)
Show this at end of lecture 1f we have time



QuickSort versus MergeSort

/** Sort b[h..k] */ /** Sort b[h..k] */
public static void QS public static void MS
(int[] b, int h, int k) { (int[] b, int h, int k) {

if (k—h<1) return; if (k —h<1) return;
int j= partition(b, h, k); MS(b, h, (h+k)/2);
QS(b, h, j-1); MS(b, (h+k)/2 + 1, k);
QS(b, j+1, k); merge(b, h, (h+k)/2, k);

h h

One processes the array then recurses.
One recurses then processes the array.




Partition. Key issue. How to choose pivot

h h k
pre:  blx ? Choosing pivot
Ideal pivot: the median,
h J k since 1t splits array in half
post: p| <=x |[x| >=x But computing is O(n), quite
complicated

Popular heuristics: Use

¢ first array value (not so good)

¢ middle array value (not so good)

¢ Choose a random element (not so good)

¢ median of first, middle, last, values (often used)!



Performance
I

mmm

Insertion Sort 0(n) to 0(n?) 0(1)
Selection Sort 0(n?) 0(1) No
Merge Sort n log(n) 0o(n) Yes

Quick Sort nlog(n) to 0(n?)  0(log(n)) No



Sorting in Java

Java.util.Arrays has a method Sort()

implemented as a collection of overloaded methods

for primitives, Sort is implemented with a version of
quicksort

for Objects that implement Comparable, Sort is
implemented with mergesort

Tradeoff between speed/space and
stability /performance guarantees



Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively. We may show you this later. Not today!



QuickSort with logarithmic space

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
int h1=h; int kl1=k;
// mnvariant b[h. k] 1s sorted 1f b[h1..k1] 1s sorted
while (b[h1..k1] has more than 1 element) {
Reduce the size of b[h1..k1], keeping inv true



QuickSort with logarithmic space

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
int h1=h; int k1=Kk;
// invariant b[h..k] 1s sorted if b[h1..k1] 1s sorted
while (b[h1..k1] has more than 1 element) {
int j= partition(b, h1, k1);
// b[hl..J-1] <=b[j] <=b[j+1..kl1]
if (b[h1..j-1] smaller than b[j+1..k1])
{ QS(b, h, J-1); hl= j+1;}
else

Only the smaller
segment 1s sorted

recursively. If b[hl..k1]
has size n, the smaller

{QS(b, j*+1, kl); k1= j-1;} segment has size <n/2.
Therefore, depth of

! recursion 1s at most log n



