
SORTING
Lecture 11

CS2110 – Fall 2017

"Organizing is what you do before you do something,
so that when you do it, it is not all mixed up."

~ A. A. Milne

Prelim 1

¨ It's on Tuesday Evening (3/13)
¨ Two Sessions:

¤ 5:30-7:00PM: netid aa..ks
¤ 7:30-9:00PM: netid kt..zz
¤ If you have a conflict with your assigned time but can

make the other time, fill out conflict assignment on CMS
BY TOMORROW

¨ Three Rooms:
¤ We will email you Tuesday morning with your room

¨ Bring your Cornell ID!!!

2

Prelim 1

¨ Recitation 5: prelim review
¨ Review Session: Sunday 3/11, 1-3pm in Kimball B11
¨ Study guide on course website

3

Why Sorting?

¨ Sorting is useful
¤ Database indexing
¤ Operations research
¤ Compression

¨ There are lots of ways to sort
¤ There isn't one right answer
¤ You need to be able to figure out the options and

decide which one is right for your application.
¤ Today, we'll learn about several different algorithms

(and how to derive them)

4

Some Sorting Algorithms

¨ Insertion sort
¨ Selection sort
¨ Merge sort
¨ Quick sort

5

InsertionSort

6

pre: b
0 b.length

? post: b
0 b.length

sorted

inv:

or: b[0..i-1] is sorted

b
0 i b.length

sorted ?
A loop that processes
elements of an array

in increasing order
has this invariant

Each iteration, i= i+1; How to keep inv true?

7

inv: b
0 i b.length

sorted ?

b
0 i b.length
2 5 5 5 7 3 ? e.g.

b
0 i b.length
2 3 5 5 5 7 ?

88

inv: b
0 i b.length

sorted ?

b
0 i b.length
2 5 5 5 7 3 ? e.g.

Push b[i] to its
sorted position
in b[0..i], then
increase i

What to do in each iteration?

2 5 5 5 3 7 ?

2 5 5 3 5 7 ?

2 5 3 5 5 7 ?

2 3 5 5 5 7 ?

Loop
body

(inv true
before

and after)

b
0 i b.length
2 3 5 5 5 7 ?

This will take time proportional to the number of swaps needed

9

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 0; i < b.length; i= i+1) {

// Push b[i] down to its sorted
// position in b[0..i]

}

Note English statement
in body.

Abstraction. Says what
to do, not how.

This is the best way to
present it. We expect
you to present it this

way when asked.

Later, can show how to
implement that with an

inner loop

Insertion Sort

Present algorithm like this

Insertion Sort
10

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 0; i < b.length; i= i+1) {

// Push b[i] down to its sorted
// position in b[0..i]

}

invariant P: b[0..i] is sorted
except that b[k] may be < b[k-1]

while (k > 0 && b[k] < b[k-1]) {

}

start?
stop?

progress?k= k–1;

maintain
invariant?

Swap b[k] and b[k-1]

int k= i;

2 5 3 5 5 7 ?
ik

example

11

�Worst-case: O(n2)
(reverse-sorted input)

�Best-case: O(n)
(sorted input)

�Expected case: O(n2)

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 0; i < b.length; i= i+1) {

// Push b[i] down to its sorted
// position in b[0..i]}

Pushing b[i] down can take i swaps.
Worst case takes

1 + 2 + 3 + … n-1 = (n-1)*n/2
Swaps.

Let n = b.length

Insertion Sort

Performance

Algorithm Time Space Stable?

Insertion Sort 𝑂(𝑛) to 𝑂(𝑛%) 𝑂(1) Yes

Merge Sort

Quick Sort

12

Algorithm Time Space Stable?

Insertion Sort 𝑂(𝑛) to 𝑂(𝑛%) 𝑂(1) Yes

Selection Sort 𝑂(𝑛%) 𝑂(1) No

Merge Sort

Quick Sort

SelectionSort

13

pre: b
0 b.length

? post: b
0 b.length
sorted

inv: b
0 i b.length
sorted , <= b[i..] >= b[0..i-1] Additional term

in invariant

Keep invariant true while making progress?

e.g.: b
0 i b.length
1 2 3 4 5 6 9 9 9 7 8 6 9

Increasing i by 1 keeps inv true only if b[i] is min of b[i..]

SelectionSort

14 Another common way for
people to sort cards

Runtime
with n = b.length
§Worst-case O(n2)
§Best-case O(n2)
§Expected-case O(n2)

//sort b[], an array of int
// inv: b[0..i-1] sorted AND
// b[0..i-1] <= b[i..]
for (int i= 0; i < b.length; i= i+1) {

int m= index of minimum of b[i..];
Swap b[i] and b[m];

}

sorted, smaller values larger valuesb
0 i length

Each iteration, swap min value of this section into b[i]

Performance
15

Algorithm Time Space Stable?

Insertion Sort 𝑂(𝑛) to 𝑂(𝑛%) 𝑂(1) Yes

Selection Sort 𝑂(𝑛%) 𝑂(1) No

Merge Sort

Quick Sort

Merge two adjacent sorted segments

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {
}

16

4 7 7 8 9 3 4 7 8b

3 4 4 7 7 7 8 8 9b

h t k

sorted sorted
h t k

merged, sorted
h k

Merge two adjacent sorted segments

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {

Copy b[h..t] into a new array c;
Merge c and b[t+1..k] into b[h..k];

}

17

sorted sorted
h t k

merged, sorted
h k

Merge two adjacent sorted segments

// Merge sorted c and b[t+1..k] into b[h..k]

18

xc

x and y, sorted

? yb
h t k

head of x tail of xc
0 i c.lengthinvariant:

0 t-h
pre: x, y are sorted

post: b
h k

tail of y? b
h u v k

head of x and head of y, sorted

19 int i = 0;
int u = h;
int v = t+1;
while(i <= t-h){

if(v < k && b[v] < c[i]) {
b[u] = b[v];
u++; v++;

}else {
b[u] = c[i];
u++; i++;

}
}

}

Merge

sortedc

sorted

? sortedb
h t k

sorted sortedc
0 i c.lengthinv:

0 t-h
pre:

post: b
h k

sortedsorted ? b
h u v k

Mergesort

/** Sort b[h..k] */
public static void mergesort(int[] b, int h, int k]) {

if (size b[h..k] < 2)
return;

int t= (h+k)/2;
mergesort(b, h, t);
mergesort(b, t+1, k);
merge(b, h, t, k);

}

20

h t k

merged, sorted
h k

sorted sorted

Performance

Algorithm Time Space Stable?

Insertion Sort 𝑂(𝑛) to 𝑂(𝑛%) 𝑂(1) Yes

Merge Sort 𝑛	log	(𝑛) 𝑂(𝑛) Yes

Quick Sort

21

Algorithm Time Space Stable?

Insertion Sort 𝑂(𝑛) to 𝑂(𝑛%) 𝑂(1) Yes

Selection Sort 𝑂(𝑛%) 𝑂(1) No

Merge Sort 𝑛	log	(𝑛) 𝑂(𝑛) Yes

Quick Sort

QuickSort
22

Quicksort developed by Sir Tony Hoare (he was
knighted by the Queen of England for his
contributions to education and CS).
83 years old.
Developed Quicksort in 1958. But he could not
explain it to his colleague, so he gave up on it.
Later, he saw a draft of the new language Algol 58 (which became
Algol 60). It had recursive procedures. First time in a procedural
programming language. “Ah!,” he said. “I know how to write it
better now.” 15 minutes later, his colleague also understood it.

Partition algorithm of quicksort
23

Swap array values around until b[h..k] looks like this:

x ?
h h+1 k

<= x x >= x
h j k

pre:

post:

x is called
the pivot

20 31 24 19 45 56 4 20 5 72 14 99
24

pivot
partition

j
19 4 5 14 20 31 24 45 56 20 72 99

Not yet
sorted

Not yet
sorted

these can be
in any order

these can be
in any order The 20 could

be in the other
partition

Partition algorithm of quicksort

Partition algorithm

25

x ?
h h+1 k

<= x x >= x
h j k

b

b

<= x x ? >= x
h j t k

b

pre:

post:

Combine pre and post to get an invariant

invariant
needs at

least 4
sections

Partition algorithm
26

<= x x ? >= x
h j t k

b

j= h; t= k;
while (j < t) {

if (b[j+1] <= b[j]) {
Swap b[j+1] and b[j]; j= j+1;

} else {
Swap b[j+1] and b[t]; t= t-1;

}
}

Terminate when j = t,
so the “?” segment is
empty, so diagram
looks like result
diagram

Initially, with j = h
and t = k, this
diagram looks like
the start diagram

Takes linear time: O(k+1-h)

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {

if (b[h..k] has < 2 elements) return;

Function does the
partition algorithm and
returns position j of pivot

int j= partition(b, h, k);
// We know b[h..j–1] <= b[j] <= b[j+1..k]

}

QuickSort procedure

27

Base case

// Sort b[h..j-1] and b[j+1..k]

QS(b, h, j-1);
QS(b, j+1, k);

<= x x >= x
h j k

Worst case quicksort: pivot always smallest value

28

x0 >= x0
j n

partioning at depth 0

x0 x1 >= x1
j

partioning at depth 1

x0 x1 x2 >= x2
j

partioning at depth 2

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {

if (b[h..k] has < 2 elements) return;
int j= partition(b, h, k);
QS(b, h, j-1); QS(b, j+1, k);

Depth of
recursion: O(n)

Processing at
depth i: O(n-i)

O(n*n)

Best case quicksort: pivot always middle value

29

<= x0 x0 >= x0
0 j n

depth 0. 1 segment of
size ~n to partition.

<=x1 x1 >= x1 x0 <=x2 x2 >=x2 Depth 2. 2 segments of
size ~n/2 to partition.
Depth 3. 4 segments of
size ~n/4 to partition.

Max depth: O(log n). Time to partition on each level: O(n)
Total time: O(n log n).

Average time for Quicksort: n log n. Difficult calculation

QuickSort complexity to sort array of length n

30

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {

if (b[h..k] has < 2 elements) return;
int j= partition(b, h, k);
// We know b[h..j–1] <= b[j] <= b[j+1..k]
// Sort b[h..j-1] and b[j+1..k]
QS(b, h, j-1);
QS(b, j+1, k);

}

Time complexity
Worst-case: O(n*n)
Average-case: O(n log n)

Worst-case space: O(n)!
--depth of recursion can be n

Can rewrite it to have space O(log n)
Show this at end of lecture if we have time

Worst-case space: ?
What’s depth of recursion?

31

QuickSort versus MergeSort
31

/** Sort b[h..k] */
public static void QS

(int[] b, int h, int k) {
if (k – h < 1) return;
int j= partition(b, h, k);
QS(b, h, j-1);
QS(b, j+1, k);

}

/** Sort b[h..k] */
public static void MS

(int[] b, int h, int k) {
if (k – h < 1) return;
MS(b, h, (h+k)/2);
MS(b, (h+k)/2 + 1, k);
merge(b, h, (h+k)/2, k);

}

One processes the array then recurses.
One recurses then processes the array.

Partition. Key issue. How to choose pivot
32

Popular heuristics: Use
w first array value (not so good)
w middle array value (not so good)
w Choose a random element (not so good)
w median of first, middle, last, values (often used)!

x ?
h h k

<= x x >= x
h j k

b

b

pre:

post:

Choosing pivot
Ideal pivot: the median,
since it splits array in half
But computing is O(n), quite
complicated

Performance

Algorithm Time Space Stable?

Insertion Sort 𝑂(𝑛) to 𝑂(𝑛%) 𝑂(1) Yes

Selection Sort 𝑂(𝑛%) 𝑂(1) No

Merge Sort 𝑛	log	(𝑛) 𝑂(𝑛) Yes

Quick Sort 𝑛 log(𝑛) to 𝑂(𝑛%) 𝑂(log 𝑛) No

33

Sorting in Java

¨ Java.util.Arrays has a method Sort()
¤ implemented as a collection of overloaded methods
¤ for primitives, Sort is implemented with a version of

quicksort
¤ for Objects that implement Comparable, Sort is

implemented with mergesort

¨ Tradeoff between speed/space and
stability/performance guarantees

34

Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively. We may show you this later. Not today!

35

QuickSort with logarithmic space

36

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {

int h1= h; int k1= k;
// invariant b[h..k] is sorted if b[h1..k1] is sorted
while (b[h1..k1] has more than 1 element) {

Reduce the size of b[h1..k1], keeping inv true
}

}

QuickSort with logarithmic space

37

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {

int h1= h; int k1= k;
// invariant b[h..k] is sorted if b[h1..k1] is sorted
while (b[h1..k1] has more than 1 element) {

int j= partition(b, h1, k1);
// b[h1..j-1] <= b[j] <= b[j+1..k1]
if (b[h1..j-1] smaller than b[j+1..k1])

{ QS(b, h, j-1); h1= j+1; }
else

{QS(b, j+1, k1); k1= j-1; }
}

}

Only the smaller
segment is sorted

recursively. If b[h1..k1]
has size n, the smaller

segment has size < n/2.
Therefore, depth of

recursion is at most log n

