
CS/ENGRD 2110
SPRING 2018
Lecture 7: Interfaces and Abstract Classes
http://courses.cs.cornell.edu/cs2110

1

St Valentine’s Day!
2

It's Valentines Day, and so fine!
Good wishes to you I consign.*
But since you're my students,
I have to show prudence.
I won't call you my Valentine.

Today is Valentine's Day. According to Wikipedia, it originated as a day
honoring two saints named Valentinus, but around the years 1000..1250 it
became associated with a tradition of courtly love. The day first became
associated with romantic love within Geoffrey Chaucer’ circle in the 14th
century. Later, in 18th century England, it evolved into what it is today: an
occasion in which lovers express their love for each other by presenting
flowers, confectionery, greeting cards, or whatever.

To ask you all to "be my Valentine" wouldn't be prudent. It might cause us
problems, given our teacher-student relationship. But I can and do wish
you a happy day. And I and the CS2110 will continue to serve you,
attempting to give you the best course possible. gries

*consign: commit forever, commit irrevocably.

Announcements
3

A2 is due tonight (15 February)

Get started on A3 – a method every other day. You have twi
weeks.

A3 asks you to learn about an interesting data structure, the
linked list, by reading on your own.

Don’t be concerned with applications of the linked list. You’ll see
many uses of linked lists in the rest of the course!

3

About A3. linked list data structure
4

This is a linked list containing the list of integers (6, 7, 3).

4

header, containing size
of list and pointer to
first node

Each node (N@1, N@8, N@2)
contains a value of the list and a
pointer to next node (null if none)

Why use linked list? Can insert a value at beginning of list
with just a few instructions ---constant time

A3 introduces generics
5

5

Generic programming: a style of computer
programming in which algorithms are written in
terms of types to be specified later, which are
then instantiated when needed for specific types .

A3 introduces generics
6

/** An instance maintains a set of some max size. */
public class TimeSet {

private Entry[] s; // The set elements are in s[0..n-1]
private int n; // size of set.

}
6

new TimeSet(10)

This set can contain any
values, e.g. {6, “xy”, 5.2, ‘a’}

<E> // E is a type parameter

new TimeSet<String>(10)

This set can contain only
Strings, e.g. {“xy”, “a”}

A3 introduces generics
7

/** An instance maintains a set of some max size. */
public class TimeSet {

private Entry[] s; // The set elements are in s[0..n-1]
private int n; // size of set.

}
7

<E> // E is a type parameter

A3 introduces inner classes
8

/** An instance represents a linked list … */
public class TimeSet {

private Node first; // first node of list (null if size 0)
private int size; // Number of values.

}
8

<E> // E is a type parameter

Note how type parameter E is used

new TimeSet<String> // E will be String

/** An instance holds an E element. */
private class Entry {

private E val; // the element of type E
private long t; // the time at which entry was created.

A Little Geometry!
9

(x, y)

9

Position of a rectangle
in the plane is given by
its upper-left corner

Position of a circle in
the plane is given by the
upper-left corner of its
bounding box

(x, y)

A Little Geometry!
Abstract Classes

Shape
x ____
y ____

Triangle
area()
base____
height ____

Circle
area()
radius __5__

Rectangle
area()
width ____
height ____

class Shape contains the coordinates
of a shape in the plane. Each subclass
declares the fields to contain the size
and function area

Write
variables
as lines
instead of
boxes

1010

Problem: Don’t like creation of Shape objects
Abstract Classes

Shape
x ____
y ____

Circle
area()
radius __5__

Rectangle
area()
width ____
height ____

PROBLEM
Since an object of Shape is not really
a shape, don’t want to allow creation
of objects of class Shape!

Syntactic rule: if a class C is
abstract, the new-expression
new C(…) cannot be used!

Solution
public abstract class Shape {

…
}

1111

Attempt at writing function sumAreas

/** Return sum of areas of shapes in s */
public static double sumAreas(Shape[] s) {

}

Problem:
Don’t want to check type of s[k] and cast down.

Abstract Classes

double sum= 0;
for (int k= 0; k < s.length; k= k+1)

sum= sum + s[k].area();
return sum; compile-time reference rule:

s[k].area illegal, won’t compile.

1212

A Partial Solution:

Add method area to class Shape:

Abstract Classes

public double area() {
return 0;

}

Problem: a subclass might
forget to override area().

13
13

Good solution:

In abstract class Shape, to require all subclasses
to override function area, make it abstract:

Abstract Classes

public abstract class Shape {
…
/** Return the area of this shape */
public abstract double area() ;

}

Syntax:
If a method has
keyword abstract in
its declaration, use a
semicolon instead of
a method body

14
14

Abstract Summary

1. To make it impossible to create an
instance of a class C, make C abstract:

public abstract C { …}

2. In an abstract class, to require each
subclass to override method m(…),
make m abstract:

public abstract int m(…) ;

Abstract Classes

Syntax: the program cannot
be compiled if C is abstract
and there is a
new-expression new C(…)

Syntax: the program
cannot be compiled if a
subclass of an abstract
class does not override an
abstract method.

15
15

Abstract class used to “define” a type
(abstract data type — ADT)

Stack: implementation of a list that allows (only)
pushes and pops

16 16

From wikipedia

Abstract class used to “define” a type
(abstract data type — ADT)

Type: set of values together with operations on them

Suppose we want to define type Stack (of ints). It’s operations are:

isEmpty() --return true iff the stack is empty
push(k) --push integer k onto the Stack
pop() --pop the top stack element

public abstract class Stack {
public abstract boolean isEmpty();
public abstract void push(int k);
public abstract int pop();

}

Naturally, need
specifications

17 17

This defines an ADT. We
have the syntax of
operations. Javadoc
comments will describe
values and operations

Example of
subclasses of

Stack

public abstract class Stack {
public abstract boolean isEmpty();
public abstract void push(int k);
public abstract int pop();

}

public class ArrayStack extends Stack{
private int n; // stack elements are in
private int[] b; // b[0..n-1]. b[0] is bottom

/** Constructor: An empty stack of max size s. */
public ArrayStack(int s) {b= new int[s];}

public boolean isEmpty() {return n == 0;}

public void push(int v) { b[n]= v; n= n+1;}

public int pop() {n= n-1; return b[n]; }
}

Missing
lots of

tests for
errors!

Missing
specs!

18 18

Example of
subclasses of

Stack

public abstract class Stack {
public abstract boolean isEmpty();
public abstract void push(int k);
public abstract int pop();

}

public class LinkedListStack extends Stack{
private int n; // number of elements in stack
private Node first; // top node on stack

/** Constructor: An empty stack */
public LinkedListStack() {}

public boolean isEmpty() {return n == 0;}

public void push(int v) { prepend v to list}

public int pop() { …}
}

Missing
lots of

tests for
errors!

Missing
specs!

19 19

Flexibility! public abstract class Stack { … }

public class LinkedListStack extends Stack { … }

public class ArrayStack extends Stack { … }

/** A class that needs a stack */
public class C {

Stack st= new ArrayStack(20);
…
public void m() {

}
}

Choose an array
implementation,

max of 20
values

Store the
ptr in a

variable of
type Stack!

…
st.push(5);
… Use only methods

available in abstract
class Stack

20 20

Flexibility! public abstract class Stack { … }

public class LinkedListStack extends Stack { … }

public class ArrayStack extends Stack { … }

/** A class that needs a stack */
public class C {

Stack st= new ArrayStack(20);
…
public void m() {

}
}

…
st.push(5);
…

Want to use a linked
list instead of an

array? Just change
the new-expression!

LinkedListStack();

21 21

Interfaces
An interface is like an abstract class all of whose components
are public abstract methods. Just have a different syntax

22

We don’t tell you immediately WHY Java has this feature,
this construct. First let us define the interface and see how
it is used. The why will become clear as more and more
examples are shown.

(an interface can have a few other kinds of components, but
they are limited. For now, it is easiest to introduce the interface
by assuming it can have only public abstract methods and
nothing else. Go with that for now!)

Interfaces
An interface is like an abstract class all of whose components
are public abstract methods. Just have a different syntax

public abstract class Stack {
public abstract boolean isEmpty();
public abstract void push(int k);
public abstract int pop();

}

23

Here is an abstract
class. Contains

only public
abstract methods

public interface Stack {
public abstract boolean isEmpty();
public abstract void push(int k);
public abstract int pop();

}

Here is how we
declare it as an

interface

Interfaces
public abstract class Stack {
public abstract boolean isEmpty();
public abstract void push(int k);
public abstract int pop();

}

public interface Stack {
boolean isEmpty();
void push(int k);
int pop();

}

24

Since methods have to be public
and abstract, we can leave off
those keywords.

Extend a class
class StackArray

extends Stack {
…

}

Implement an interface
class StackArray

implements Stack {
…

}

25

Mammal

Human ParrotDog

Bird

Animal

A start at understanding use of interfaces
Have this class hierarchy:

class Animal { … }
class Mammal extends Animal { ... }
class Bird extends Animal { … }
class Human extends Mammal {. … }
class Dog extends Mammal { … }
class Parrot extends Bird { … }

26

Mammal

Human ParrotDog

Bird

Animal

A start at understanding use of interfaces
Humans and Parrots can whistle. Other Animals cannot.
“listenTo” is given as a whistling method:

public void listenTo(String w) { System.out.println(w); }

We need a way of indicating that
classes Human and Parrot
have this method listenTo

public interface Whistle {
void listenTo(String w) ;

}

public class Human extends Mammal
implements Whistle {

…
public void listenTo(String w) {

System.out.println(w);
}

}

(similarly for Parrot)

27

Mammal

Human ParrotDog

Bird

Animal

A start at understanding use of interfaces

Whistle

28

Here’s what an object of class Human looks like
public interface Whistle { void listenTo(String w) ; }

public class Human extends Mammal implements Whistle {
…
public void listenTo(String w) { …}

}

Human@1

Animal

Mammal

Human

Usual drawing of object

Mammal

Human

Animal

Draw it this way Add interface
dimension

Whistle

29

Here’s what an object of class Human looks like
public interface Whistle { void listenTo(String w) ; }

public class Human extends Mammal implements Whistle {
…
public void listenTo(String w) { …}

}

Mammal

Human

Animal

Whistle

A dimension for each class
that is extended and interface

that is implemented

30

Here’s what an object of class Human looks like

Human h= new Human();
Object ob= h;
Animal a= (Animal) ob;
Mammal m= h;
Whistle w= h;

Mammal

Human

Animal

Whistle

h, ob, a, m, and w all
point to the same object.

The object can be (and is)
cast to any “partition” in
it: h, ob, a, m, and w.

Upward casts: can be
implicit; inserted by Java
Downward casts: must be
explicit

31

A real use of interface: sorting

Consider an array of Shapes: want to sort by increasing area

Consider an array of ints: want to sort them in increasing order

Consider an array of Dates: want to put in chronological order

We don’t want to write three different sorting procedures!

The sorting procedure should be the same in all cases. What
differs is how elements of the array are compared.

So, write ONE sort procedure, tell it the function to be used
to compare elements. To do that, we will use an interface.

32

Interface Comparable<T>

Package java.lang contains this interface

public interface Comparable<T> {
/** = a negative integer if this object < c,

= 0 if this object = c,
= a positive integer if this object > c.
Throw a ClassCastException if c can’t

be cast to the class of this object. */
int compareTo(T c);

}

33

Real example: Comparable<T>

We implement Comparable<T> in class Shape

public abstract class Shape {
…
/** Return the area of this shape */
public abstract double area() ;

}

/** Return negative number, 0, or a positive number
depending on whether this are is <, =, or > c’s area */

public int compareTo(Shape c) {
double diff= area() – c.area();
return diff == 0 ? 0 : (diff < 0 ? -1 : 1);

Implements Comparable<Shape>

34

Arrays.sort has this method.

/** Sort array b. Elements of b must implement
interface Comparable<T>. Its method compareTo is
used to determine ordering of elements of b. */
Arrays.sort(Object[] b)

Shape implements Comparable, so we can write
// Store an array of values in shapes
Shape[] shapes= ...; ...

Arrays.sort(shapes);

35

What an object of subclasses look like
public abstract class Shape implements Comparable<Shape>{ … }
public class Circle extends Shape { … }
public class Rectangle extends Shape { … }

Shape

Circle

Object Comparable

Shape

Rectangle

Object Comparable

When sort procedure is comparing elements of a Shape array,
each element is a Shape. Sort procedure views it from
Comparable perspective!

Abstract Classes vs. Interfaces

● Abstract class represents
something

● Share common code
between subclasses

● Interface is what something
can do. Defines an “abstract
data type”

● A contract to fulfill
● Software engineering

purpose
Similarities:
● Can’t instantiate
● Must implement abstract methods
● Later we’ll use interfaces to define “abstract data types”
○ (e.g. List, Set, Stack, Queue, etc)

36
36

