
CS/ENGRD 2110
SPRING 2018
Lecture 6: Consequence of type, casting; function equals
http://courses.cs.cornell.edu/cs2110

1

The fattest knight at King Arthur's
round table was Sir Cumference. He
acquired his size from too much pi.

Overview references in JavaHyperText
2

¨ Quick look at arrays array
¨ Casting among classes cast, object-casting rule
¨ Operator instanceof
¨ Function getClass
¨ Function equals
¨ compile-time reference rule
Homework. JavaHyperText while-loop for-loop

while (<bool expr>) { … } // syntax

for (int k= 0; k < 200; k= k+1) { … } // example

A2 is due Thursday
3

Everyone should get 100/100 since we gave you all
the test cases you need.

Please look at the pinned Piazza note “Assignment
A2” for information that is not in the handout and
answers to questions.

Before Next Lecture…
4

Follow the tutorial on abstract classes and interfaces, and watch
less than 13 minutes of videos.
Visit JavaHyperText and click on

Abstract classes and interfaces

This will make Thursday’s lecture far more
understandable.

Click these

Classes we work with today
5

Work with a class Animal and subclasses
like Cat and Dog
Put components common to animals in Animal

Object

Animal

Dog Cat

class hierarchy:

a0
Animal

Cat
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5
a1

Animal

Dog
getNoise() toString()

age

isOlder(Animal)

6

Object partition is there but not shown

Animal[] v= new Animal[3];
6

declaration of
array v

v nullCreate array
of 3 elements

a6
Animal[]

0
1
2

null
null
null

Assign value of
new-exp to v

a6

Assign and refer to elements as usual:

v[0]= new Animal(…);
…
a= v[0].getAge();

null null null
0 1 2

v
Sometimes use horizontal
picture of an array:

The type of v is Animal[]
The type of each v[k] is Animal
The type is part of the syntax/grammar of
the language. Known at compile time.

Consequences of a class type
7

a0 null a1v
0 1 2

Animal[] v; declaration of v. Also means that each
variable v[k] is of type Animal

Animal objects

A variable’s type:
• Restricts what values it can contain.
• Determines which methods are legal to call on it.

Which function is called by

v[0].toString() ?

(Remember, the hidden Object
partition contains toString().)

Dog and Cat objects stored in Animal variable
8

a0 null a1v
0 1 2

a0
Animal

Cat
toString() getNoise()
getPurrs()

age

isOlder(Animal)

5
a1

Animal

Dog
toString() getNoise()

age

isOlder(Animal)

6
Bottom-up or
overriding rule
says function
toString in Cat
partition

Can store (pointers to) subclass
objects in superclass variable

From an Animal variable, can use only
methods available in class Animal

9

a0a
Animal

a.getPurrs() is obviously illegal.
The compiler will give you an error.

a0
Animalage

isOlder(Animal)

5

Dog
getNoise() toString()

When checking legality of a call like
a.getPurrs(…)

since the type of a is Animal, method
getPurrs must be declared in Animal
or one of its superclasses.
see JavaHyperText: compile-time reference rule

Compile-time reference rule: From a variable of type C, can
reference only methods/fields that are available in class C.

10

a0a
Animal

When checking legality of a call like
a.getPurrs(…)

since the type of a is Animal, method
getPurrs must be declared in Animal
or one of its superclasses.

a0
Animal

Cat
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5

Suppose a0 contains an object of a
subclass Cat of Animal. By the copmle-
time reference rule below, a.getPurrs(…)
is still illegal. Remember, the test for
legality is done at compile time, not
while the program is running.

see JavaHyperText: compile-time reference rule

Compile-time reference rule: From a variable of type C, can
reference only methods/fields that are available in class C.

11

a0
Animal

Cat
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5

a0c
Cat

a0
Animal

Cat
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5

a0a
Animal

The same object a0, from the
viewpoint of a Cat variable

and an Animal variable

c.getPurrs() is legal a.getPurrs() is illegal
because
getPurrs
is not
available in
class Animal

Compile-time reference rule: From a variable of type C, can
reference only methods/fields that are available in class C.

12

a0c
C

a0

Object

C

m(…) must be
declared in one
of these classes

Rule: c.m(…) is legal and the program will compile ONLY if
method m is declared in C or one of its superclasses.
(JavaHyperText entry: compile-time reference rule.)

…

…
…

Compile-time reference rule: From a variable of type C, can
reference only methods/fields that are available in class C.

Type of v[0]: Animal

Another example
13

a0 null a1v
0 1 2

a0
Animal

Cat
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5
a1

Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6

Should this call be allowed?
Should program compile?

v[0].getPurrs()
Should this call be allowed?
Should program compile?

v[k].getPurrs()

Each element v[k] is of
type Animal.
From v[k], see only what is in
partition Animal and
partitions above it.

View of object based on the type
14

a0 null a1v
0 1 2

a0
Animal

Cat
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5
a1

Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6

getPurrs() not in class Animal or
Object. Calls are illegal, program
does not compile:

v[0].getPurrs() v[k].getPurrs()

Components are
in lower
partitions, but
can’t see them

Animal

Casting objects
15

a0
Animal

Cat
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5

a1
Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6

You know about casts like:

(int) (5.0 / 7.5)

(double) 6

double d= 5; // automatic cast

Object

Animal

Dog Cat

You can also use casts with class types:

Animal h= new Cat("N", 5);

Cat c= (Cat) h;

A class cast doesn’t change the object. It
just changes the perspective: how it is
viewed!

age

isOlder(Animal)

Explicit casts: unary prefix operators
16

a0

Animal

Cat
getNoise() toString()
getPurrs()

5

c a0
Cat

Object
equals() …

Object-casting rule: At runtime, an object
can be cast to the name of any partition
that occurs within it —and to nothing else.
a0 can be cast to Object, Animal, Cat.
An attempt to cast it to anything else
causes an exception

(Cat) c
(Object) c
(Animal) (Animal) (Cat) (Object) c

These casts don’t take any time. The object
does not change. It’s a change of perception.

Implicit upward cast
17

a0
Animal

Cat
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5

a1
Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6

public class Animal {
/** = "this Animal is older than h" */
public boolean isOlder(Animal h) {
return age > h.age;

}

Call c.isOlder(d)

Variable h is created. a1 is cast up to
class Animal and stored in h

d a1
Dog

c a0
Cat

h a1
Animal

Upward casts done
automatically when needed

Function h.equals(ob)
20

h a0Function h.equals(ob) returns true if objects h and
ob are equal, where equality depends on the class.
Here, we mean all corresponding fields are equal.

3age
equals(Object)

a2
An 5age

equals(Object)

a1
An 5age

equals(Object)

a0
An

k a1

j a2h.equals(h): true
h.equals(k): true
h.equals(j): false

a0.equals(a0): true
a0.equals(a1): true
a0.equals(a2) false Not Java

Function h.equals(ob)
21

a0.equals(a0): true
a0.equals(a1): false
a0.equals(a2): false

age _5_
equals(Object)

a0
An

Catnoise _”p”_
equals(Object)

age _2_
equals(Object)

a1
An

Catnoise _”p”_
equals(Object)

age _3_
equals(Object)

a2
An

Catnoise _”q”_
equals(Object)

Function h.equals(ob) returns true if
objects h and ob are equal, where equality
depends on the class. Here, we mean all
corresponding fields are equal.

Function h.equals(ob)
22

age _5_
equals(Object)

a0
An

Catnoise _”p”_
equals(Object)

This function checks equality of age

This function
(1) Calls superclass equality
(2) checks equality of noise

Function h.equals(ob) returns true if objects h and
ob are equal, where equality depends on the class.
Here, we mean all corresponding fields are equal.

Function h.equals(ob)
23

age _5_
equals(Object)

a0
An

Catnoise _”p”_
equals(Object)

Function h.equals(ob) returns true if objects h
and ob are equal, where equality depends on
the class. Here, we mean all corresponding
fields are equal.

5age
equals(Object)

a1
An

This function checks equality of age

This function
(1) Calls super-class equality
(2) checks equality of noise

What is value of a1.equals(a0)?
a0.equals(a1)?

Obviously, h.equals(0b) has to check
that the classes of h and ob are the same

Function h.equals(ob)
24

age _5_
equals(Object)

a0
An

Catnoise _”p”_
equals(Object)

(1) Check classes of this and parameter
(2) Check age of this and parameter

(1) Call super-class equality
(3) Check equality of noise

f _8_
equals(Object)

Siamese

(1) Call super-class equality
(3) Check equality of noise

Use function getClass
25

h.getClass()

Let Cat be the lowest partition of object h
Then h.getClass == Cat.class

h.getClass != Animal.class

a0
Animal

Catpurrs _____
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5

h a0
Animal

Equals in Animal
26

public class Animal {
private int age;
/** return true iff this and ob are of the same class

* and their age fields have same values */
public boolean equals(Object ob) {

}

a0
Animalage

equals(Object)

5

if (ob == null || getClass() != ob.getClass()) return false;

Animal an= (Animal) ob; // cast ob to Animal!!!!

return age == an.age; // downcast was needed to reference age

public class Cat extends Animal {
private int age;
/** return true iff this and ob are of same class

* and their age and noise fields have same values */
public boolean equals(Object ob) {}

}

Equals in Cat
27

public class Animal {
private int age;
/** return true iff this and ob are of same class

* and their age fields have same values */
public boolean equals(Object ob) {}

if (!super.equals(ob) return false;

return noise == ca.noise; // needed to reference noise

a0
Animalage

equals(Object)

5

noise _”p”_
equals(Object)

Cat

Cat ca= (Cat) ob; // downcast is necessary!

Use operator instanceof
28

ob instanceof C

true iff ob has a partition named C

a0
Animal

Catpurrs _____
getNoise() toString()
getPurrs()

age

isOlder(Animal)

5

h instanceof Object true
h instanceofAnimal true
h instanceof Cat true
h instanceof JFrame false

h a0
Animal

Opinions about casting
29

Use of instanceof and downcasts can indicate bad design

DON’T:
if (x instanceof C1)

do thing with (C1) x
else if (x instanceof C2)

do thing with (C2) x
else if (x instanceof C3)

do thing with (C3) x

DO:

x.do()

… where do is overridden in the
classes C1, C2, C3

But how do I implement equals() ?
That requires casting!

