CS/ENGRD 2110
SPRING 2018

Announcements

A1l is due today

If you are working with a partner, you must form a group on CMS
and submit one solution!

A2 is out. Remember to get started early!

Next week's recitation is on testing. No tutorial /quiz this week!

Local variables middle(8, 6, 7)

/** Return middle value of a, b, ¢ (no ordering assumed) */
public static int middle(int a, int b, int ¢) {

if (b>c) { Parameter: variable
int temp= b; declared in () of
be o ’ Local variable: method header
— te,m . variable

\ P declared in a|l8|b|6| c|7

method body -

£ b) | temp | -

if (a <=
return b: All parameters and local variables

! are created when a call is executed,

before the method body is executed.

return Math.min(a, c); They are destroyed when method
! body terminates.

Scope of local variables

/** Return middle value of a, b, ¢ (no ordering assumed) */
public static int middle(int a, int b, int ¢) {

if (b>c¢) {
int temp= b;

block

b= c;
c= temp; \
h

if (a<=b) {
return b;

h

return Math.min(a, ¢);

Scope of local variable (where it
can be used): from its declaration
to the end of the block in which it
is declared.

Scope In General: Inside-out rule

Inside-out rule: Code in a construct can reference names declared in
that construct, as well as names that appear in enclosing constructs.

(If name is declared twice, the closer one prevails.)

/** A useless class to illustrate scopes™/

public class C{
private int field; |
public void method(int parameter) {
if (field > parameter) { —— | class

int temp= parameter; block method

f—_—]
}

Principle: declaration placement

/** Return middle value of a, b, ¢ (no ordering assumed) */
public static int middle(int a, int b, int ¢) {

i;,ltl:e:g)’{ Not good! No need for reader to
temp= b know about temp except when
b= c: ’ reading the then-part of the if-
c= temp; statement
h
if (a<=b) {
return b;
J Principle: Declare a local variable
return Math.min(a, c¢); as close to its first use as possible.

h

Bottom-up /overriding rule

Which method toString()
1s called by

turing.toString() ?

The overriding rule, a k.a. the
bottom-up rule:

To find out which method 1s
used, start at the bottom of the
object and search upward until a
matching one is found.

turing

Person@?20

Person@?20

Object

toString()

Person

name "Turing"

toString() { ... }

Constructing with a Superclass

/** Constructor: person “f n” */
public Person(String f, String 1) {

first=n;

last=1; Use super (not Person) to

§ call superclass constructor.

JH* Co;lpyéctor: PhD with a year. */

public PhD(String f, String I, int y) {

super(f, 1); —

gradYear=y;

h

Must be first statement
in constructor body!

new PhD("David", "Gries", 1966);

PhD@a0
toString() Object
Person
first | David" | last | Gries"
getName()
PhD
gradYear | 1966

About super

PhD@aO
toString() Object
Person
first | 'David" last | Gries"
getName()
gradYear | 1966 PhD

getName() { ... super.getName(

Within a subclass object,
super refers to the
partition above the one
that contains super.

Because of
keyword super,
the call toString
here refers to the
Person partition.

Bottom-Up and Inside-Out

Person
PhD@aO
52> I toString() Object
Person
first | David"| |ast | Gries"
getName()
gradYear |1966 PhD super

getName()

Without OO ...

Without OO, you would write a long involved method:

public double getName(Person p) {

if {p is a PhD) OO eliminates need for many of

{...} these long, convoluted methods,
else if (p is a GradStudent) which are hard to maintain.

{...} Instead, each subclass has its own
else if (p prefers anonymity) getName.
{...} Results in many overriding

else ... method implementations, each of
! which is usually very short

