
Writing	functions	equals	and	hashCode		

Class HshSet<E> 

Assume we have written class HshSet, with type parameter E. You know that somewhere in this class 
is a call e.hashCode(), for some e of type E. Further, somewhere, in testing whether the linked list in a 
bucket b[h] contains e, there will be a call on e.equals(…).  

Class Pt 

Now suppose we have class Pt, whose instances represent points in the plane. We show a constructor; 
naturally, there are many other methods. 

 /** An instance is a point (x, y) in the plane */ 
 public class Pt { 
     int x;    int y; 

     /** Constructor: An instance for point (x, y) */ 
     public Pt(int x, int y) { … } 

} 

The need to define equals in class Pt 

With these two classes, we can create a set s whose elements are of type Pt.  After some computation, 
we might add a Pt object to s. Later on, we might attempt to add to s another Pt object with the same 
values in the field. But we don’t want this Pt to be added to set s because it equals an object that is already 
in s! So, we can’t use function equals in class Object; we have to override it. Here’s the overriding 
declaration. 

The need to define hashCode in class Pt 
But now we have a problem: e1 and e2 are different objects, at different places in memory, so they may hash to 

different integers. This means that e1 may be added to one bucket and e2 to another. Clearly, we must ensure that 
equal objects hash to the same integer: 

 if e1.equals(e2) then e1.hashCode() == e2.hashCode 

Therefore, we must override function hashCode in class Pt. 

How to define hashCode? 

Besides making sure that equal values hash to the same integer, hashCode should be relatively random and be 
fairly fast. In the case of class Pt, the simplest approach is to have hashCode return the sum of the x and y fields: 

     /** return the sum of x and y of this Pt. */ 
     public @Override int hashCode() { 
          return x + y; 
     } 

A few examples of from Java’s built-in classes might help. Function hashCode in wrapper class Integer simply 
returns the integer that is wrapped in an object, with no change. The same for hashCode in wrapper class Byte. 

Function hashCode in class String depends is a complicated formula that depends on all characters in a String. 
So it takes time proportional to the length of the String. Do not use it for long Strings. 

Class java.util.Date, many of whose methods are deprecated, maitains a time, in milliseconds, since 1 Jan 1970. 
That’s a long value. The hashCode is a manipulation of that long value (found by taking the exclusive OR of its two 
halves). Don’t worry about this except to note that it is very efficient. 


