Problems with typical array implementations of sets

A mathematical set is simply a bunch of distinct, or different, elements. The typical operations on a set s appear to the right.

A simple implementation uses an array b, with, say, the n integers occupying $\mathrm{b}[0 . . \mathrm{n}-1]$. We show an example with $\mathrm{n}=5$.


```
Methods for set s
s.isEmpty()
s.size()
s.add(e)
s.contains(e)
s.remove(e)
```

A request to add an element involves first determining whether the element is already in $\mathrm{b}[0 . . \mathrm{n}-1]$, because it can't be added if it's already there. Similarly, a request to remove an element involves determining whether the element is in $\mathrm{b}[0 . . \mathrm{n}-1]$.

A search for e is typically made starting at the beginning and looking at every element until e is found -or until the end is reached, meaning e is not in the set. This takes expected-case time $O(n)$ and worst-case time $O(n)$, so operations add and remove take $O(n)$ time.

If the elements are from an ordered set, we could keep $\mathrm{b}[0 . . \mathrm{n}-1]$ in ascending order and then use binary search to see whether a value is in the set. This reduces the look-up time to $\mathrm{O}(\log n)$. However, operation add would still take expected-case and worst-case time $\mathrm{O}(\mathrm{n})$ because adding a very small value requires moving everything up one element. For example, adding 2 to $(1,3,4,5,8)$ requires moving $(3,4,5,8)$ up one position in the array.

