
Now	we	see	why	recursion	works	
David	Gries	and	Scott	Wehrwein	

We execute a call on the recursive factorial function.

Assume that a method body contains the assignment z= fact(3); and a frame
for a call on this method is at the top of the call stack.

We carry out function call fact(3).

Algorithm

 1. Push a frame for the call onto the call stack.

 2. Assign the values of the arguments of the call to the parameters.
 The value of the argument is 3, so we store 3 in n.

 3. Execute the method body, using the frame for the call to access
 parameters and local variables.
 n is 3, so execution of the if-statement does nothing.
 Evaluating the return-expression requires evaluating the function call
 fact(n-1), so we push a frame for the call onto the call stack.

4. Pop the frame for the call from the call stack. If this is a function call
 (and it is), push the value to be returned onto the call stack.

/** = factorial n.
 * Precondition: n >= 0. */
public static int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n–1);
}

... z= fact(3); …

:
the call stack

	
	 3 n

 ra

 z ra

 	n	 ra ?

Now you can see why recursion works! Each call has its own space —
on the call stack— for its parameters, local variables, and return address.
It doesn’t matter whether a call is recursive or not, it has its own space,
and its method body is executed independently of all other calls.

If you are still uneasy with executing recursive calls, we encourage
you to execute the call fact(3) to completion yourself, following the algo-
rithm for executing a method call slowly and carefully. The best way to
learn and understand is to do.

