
Breadth-first	search	
David	Gries	

Breadth-first search of a graph visits all nodes of a graph that are reachable along
unvisited paths from node u in the following order:

 First u.
 Then all nodes that are 1 edge from u.
 Then all nodes that are 2 edges from u,
 And so forth.

Here is the iterative depth-first search algorithm that we developed earlier:

 /** Visit every node reachable along a path of unvisited nodes from node u.
 Precondition: u has not been visited. */
 public static void dfsIterative(Node u) {
 Stack s= (u); // Not Java!
 // Invariant: all nodes (and only those nodes) that have to be visited are
 // reachable along a path of unvisited nodes from some node in s.
 while (s is not empty) {
 u= s.pop();
 if (u is not visited) {
 Visit u;
 For each neighbor w of u:
 s.push(w);
 }
 }
 }

We change it into a breadth-first search simply by changing s from a stack to a queue!

 /** Visit every node reachable along a path of unvisited nodes from node u.
 Precondition: u has not been visited. */
 public static void bfs(Node u) {
 Queue s= (u); // Not Java!
 // Invariant: all nodes (and only those nodes) that have to be visited are
 // reachable along a path of unvisited nodes from some node in s.
 while (s is not empty) {
 u= s.remove(); // remove first element of queue and store it in u
 if (u is not visited) {
 Visit u;
 For each neighbor w of u:
 s.add(w); // append w to queue
 }
 }
 }

We explain why this results in a breadth-first search. First, for any integer i ≥ 0, nodes that are i edges from u are
put in the queue before nodes that are i+1 edges from u. Second, nodes are removed from the front of the queue and
visited (if not yet visited), so those closer to u are visited first.

6 5 7

3 2 4

u 1

