4/6/15

Recitation 9

Tree Rotations and AVL Trees

BSTs

Review: Binary Search Tree (BST)

ideal case

worst case:
a a O(n) lookup
O(n) insertion

O(n) deletion

x < 4 x > 4

BSTs BSTs
Make BSTs balanced! Review: definition of Height
Bal d BST :
alance wor(s)t(lc;ags:). lookup public static int getHeight (TreeNode t) {
° O(log n) insertion if (£ == null)
O(log n) deletion return -1;
a a return 1 + Math.max (getHeight (t.left),
getHeight (t.right));
If a BST becomes unbalanced, }
a we can rebalance it in O(log n).
length of the longest path from a node to a leaf

BSTs BSTs

Definition of Balanced

public static boolean isBalanced (TreeNode t) {
return t == null ||
Math.abs (getHeight (t.left) -
getHeight (t.right)) <= 1 &&
isBalanced (t.left) &&
isBalanced(t.right);
}

A tree is balanced if each of its subtrees is

a1 4 DT O IR A SO AR D= i + P
Patanced and therr herghts adrffer by atmost—=

isBalanced: Recursion needed!

All subtrees need to
be balanced!

4/6/15

Tree Rotations

Tree Rotations

Notation

k+2

° Inorder traversal:

e AxByC
Recall that the BST inorder

5
k k traversal gives sorted order.
A <\ A subtree of height k

Tree Rotations

Rotations: Used to balance a BST

k+2 The blue pointers are the only K+2
ones that change.

Inorder traversals are the same

Tree Rotations

Rotations example

unbalanced
node

Tree Rotations

Rebalancing

unbalanced

Tree Rotations

Problem: Rotating a Zig-Zag!

unbalanced

node
2 0
OO,

left child taller
1

rigm child tauer‘kzig-Zag: taller

children on

We get the
opposite Zig-Zag!

opposite sides

4/6/15

Tree Rotations

Double rotate

=) (3) N

unbalanced
node

Tree Rotations

Double rotate

Tree Rotations

Rebalancing with double rotate

Tree Rotations

Rebalancing with double rotate

OF

k+2

Tree Rotations

Summary of Rotations

Double rotation
necessary

Only single rotation
necessary

°A AAAeA Kaha

Symmetry holds for the other cases

Balanced!

Tree Rotations

Question: What is the resulting tree?

4/6/15

Question: What is the resulting tree?

Question: What is the resulting tree?

AVL Trees

AVL Trees

Named after its two Soviet inventors,
Georgy Adelson-Velsky and E. M. Landis, who described
AVL tres in a paper in 1962.

First invention of self-balancing BSTs.
Later: red-black trees, splay trees, and others

AVL Tree

AVL Tree: self-balancing BST Avt invariant:
the height difference between its left

0 and right children is at most 1

Lookup works the same as a normal

a a BST lookup

worst case:

G e O(log n) lookup
O(log n) insertion

O(log n) deletion

Inserting an element

; Insert like a normal BST and if the
insert(E elem) AVL invariant is broken, do a single
o or double rotation to fix it

Localizing the problem:

o e 1. Imbalance will occur only on the

path from the root to the newly

inserted node
o o 2. Rebalancing should occur at the
deepest node

3. Must search for possible

https://www.cs.usfca.edu/~galles/visualization/ imbalance all the way up to root

AVLtree.html

4/6/15

Why use AVL Trees?

If HashSets have a lookup of expected O(1), why use BSTs with an expected
lookup time of O(log n)?

Depends on the problem:
1. Binary Search Trees are great at keeping elements in sorted order.
2. Key Ranges: How many words in the set start with k and end in z?
3. findPredecessor (E elem) and findSuccessor (E elem)
e O(log n) for AVL Tree, expected case O(n) for HashSet
4. Better worst case lookup and insertion times

Prelim Information

1. Tree Rotations will not be tested on Prelim 2

2. You don’t need to be able to write Tree Rotations code
but can find it online if interested

