
4/6/15

1

Recitation 9

Tree Rotations and AVL Trees

Review: Binary Search Tree (BST)

4

2 5

worst case:
O(n) lookup
O(n) insertion
O(n) deletion

1 3

ideal case

4

2

5

1

3

BSTs

x < 4 x > 4

Make BSTs balanced!

4

2 5

1 3

Balanced BST worst case:
O(log n) lookup
O(log n) insertion
O(log n) deletion

If a BST becomes unbalanced,
we can rebalance it in O(log n).

BSTs

Review: definition of Height

public static int getHeight(TreeNode t) {
 if (t == null)
 return -1;
 return 1 + Math.max(getHeight(t.left),

 getHeight(t.right));

}

BSTs

length of the longest path from a node to a leaf

Definition of Balanced
public static boolean isBalanced(TreeNode t) {

 return t == null ||
 Math.abs(getHeight(t.left) -

 getHeight(t.right)) <= 1 &&
 isBalanced(t.left) &&
 isBalanced(t.right);

}
A tree is balanced if each of its subtrees is
balanced and their heights differ by at most 1

BSTs

isBalanced: Recursion needed!
BSTs

3

1

4

0

2

-3

-1

-4

-2 All subtrees need to
be balanced!

4/6/15

2

Tree Rotations

Notation
Tree Rotations

x

y
A

B C

k+2

k+1

k k

k

A subtree of height k

Inorder traversal:
A x B y C

Recall that the BST inorder
traversal gives sorted order.

Rotations: Used to balance a BST
Tree Rotations

x

y
A

B C

k+2

k+1

k k

k

Inorder traversals are the same

x

y

A B

C

k+2

k

k k

k+1

The blue pointers are the only
ones that change.

Rotations example
Tree Rotations

5

2 6

3

4

0

0

0

1

2 3
5

3 6

2 4

0 1

00

2

Rotate

unbalanced
node

21

Rebalancing
Tree Rotations

x

y
A

B
C

k+3

k+2

k+1 k

k
x

y

A B

C

k+1

k+2

k+1

k k

unbalanced
node

Problem: Rotating a Zig-Zag!
Tree Rotations

5

4 6

2

3

02

1

0

3
5

6
0

3

Rotate

unbalanced
node

3

2

1

0
We get the
opposite Zig-Zag!

4

2

Zig-Zag: taller
children on
opposite sides

left child taller

right child taller

4/6/15

3

Double rotate
Tree Rotations

5

4 6

2

3

02

1

0

3
5

4 6

3

2

0 2

0

1

3

1st Rotation

unbalanced
node

still
unbalanced

node

Double rotate
Tree Rotations

5

4 6

3

2

0 2

0

1

3

2nd Rotation

5

3 6

2 4

0 1

00

2

Rebalancing with double rotate
Tree Rotations

x

y
A

B

k+3

k+2

k

k

z
k+1

C D

k k

x

z
A

B

k+3

k+2

k

k

y
k+1

C

D k

k

1st Rotation

Rebalancing with double rotate
Tree Rotations

2nd Rotation

x

y

A B

k+1

k+2

k k

z
k+1

C D

k k

x

y
A

B

k+3

k+2

k

k

z
k+1

C D

k k

Summary of Rotations
Tree Rotations

x

y

A B

z

C D

x

y
A

B
z

C D

x

z
A

B

y

C

D

Double rotation
necessary

Only single rotation
necessary

Symmetry holds for the other cases

Balanced!

Question: What is the resulting tree?
Tree Rotations

5

2 6

1 3

4

0 2

10

0

3

4/6/15

4

Question: What is the resulting tree?
Tree Rotations

5

2 6

1 3

4

0 2

10

0

3
5

3 6

2 4

0 2

01

3

1
0

1st Rotation

Question: What is the resulting tree?
Tree Rotations

5

3 6

2 4

0 2

01

3

1
0

2nd Rotation

3
2

2
1

5
1

1
0

4
0

6
0

AVL Trees

AVL Trees
AVL Trees

Named after its two Soviet inventors,
Georgy Adelson-Velsky and E. M. Landis, who described
AVL tres in a paper in 1962.

First invention of self-balancing BSTs.
Later: red-black trees, splay trees, and others

AVL Tree
AVL Trees

4

2 5

1 3

AVL Tree: self-balancing BST

worst case:
O(log n) lookup
O(log n) insertion
O(log n) deletion

AVL invariant:
the height difference between its left
and right children is at most 1

Lookup works the same as a normal
BST lookup

Inserting an element
AVL Trees

4

2 5

1 3

insert(E elem) Insert like a normal BST and if the
AVL invariant is broken, do a single
or double rotation to fix it

Localizing the problem:
1.  Imbalance will occur only on the

path from the root to the newly
inserted node

2.  Rebalancing should occur at the
deepest node

3.  Must search for possible
imbalance all the way up to root https://www.cs.usfca.edu/~galles/visualization/

AVLtree.html

4/6/15

5

Why use AVL Trees?
If HashSets have a lookup of expected O(1), why use BSTs with an expected
lookup time of O(log n)?

Depends on the problem:
1.  Binary Search Trees are great at keeping elements in sorted order.
2.  Key Ranges: How many words in the set start with k and end in z?

 3. findPredecessor(E elem) and findSuccessor(E elem)
●  O(log n) for AVL Tree, expected case O(n) for HashSet

 4. Better worst case lookup and insertion times

AVL Trees

Prelim Information

1.  Tree Rotations will not be tested on Prelim 2

2.  You don’t need to be able to write Tree Rotations code

but can find it online if interested

