
�1CS2110 Fall 2015 Assignment A6. Min-Heaps Due on CMS by Monday, 9 November

Implementing min-heaps

Preamble
The results of this assignment, A6, are used in A7, which is an implementation of Dijkstra’s algorithm to find a
shortest path in a graph —what google maps uses to find the best route from one place to another.

A6 involves implementing a heap with the added functionality of being able to change a priority. A6 requires
meticulous attention to detail. So that it doesn’t take too long, we give you a complete JUnit testing program for it.

Keep track of how much time you spent on A6; we will ask for it upon submission.

Read this whole document before beginning to code.

The due date is 9 November, but we suggest getting it done well before that date. The last month can be stressful.

Collaboration policy and academic integrity

You may do this assignment with one other person. Both members of the group should get on the CMS and do what
is required to form a group well before the assignment due date. Both must do something to form the group: one
proposes, the other accepts.

People in a group must work together. It is against the rules for one person to do some programming on this assign-
ment without the other person sitting nearby and helping. Take turns "driving" —using the keyboard and mouse.

With the exception of your CMS-registered group partner, you may not look at anyone else's code, from this se-
mester or earlier ones, in any form, or show your code to anyone else (except the course staff), in any form. You may
not show or give your code to another student in the class.

Getting help

If you don't know where to start, if you don't understand testing, if you are lost, etc., please SEE SOMEONE IM-
MEDIATELY —an instructor, a TA, a consultant. Do not wait. A little in-person help can do wonders. See the course
homepage for contact information.

The release code
We give you five files in zip file a6.zip:

1. Interface PCue (for priority queue), which defines the methods for implementing a priority queue.

2. Class Heap, which implements PCue, with the overriding methods stubbed in so that the class compiles. The
methods you must write are marked with a comment “//TODO…”. You have to complete the other stubbed-in
methods only if you are going to use them. Leave the “//TODO…” comments in the program.

3. JUNit class HeapTester, which has methods to completely test the methods you write in point 2.

4. Class PCueException —you have to throw a PCueException in certain circumstances.

5. Class ArrayHeap, which is a simple implementation of heaps in an array, with no ability to change the priority
of an element in the heap. This class is here only to show you a simple implementation of a heap. We give it to
provide an example that you can use writing the method in Heap.

Place all files in the default package in a new project called a6Heaps (or whatever you want to call it). You may have
to put JUnit 4 on the build path. Right click on the project -> build path -> configure build path; click Add Library
and select JUnit; select JUnit 4 from the drop down; and click finish. Or, direct Eclipse to insert a new JUnit Test
Case, and it will ask whether Unit 4 should be used.

�2CS2110 Fall 2015 Assignment A6. Min-Heaps Due on CMS by Monday, 9 November

What to do for this assignment
Your job is to implement the methods in class Heap that are marked “//TODO”. These are: add and bubbleUp (to-
gether), peek, poll and bubbleDown (together), and finally changePriority.

Hints and suggestions
1. Your class must implement the methods marked with “//TODO …” so that they have specified time bounds. You

may write additional private methods in the class, but be sure to specify them well. Several methods are stubbed
in that do not have a note “//TODO ”. You do not have to write these, and if you do, you can change their speci-
fications. We will not test them. We placed them there because we found them useful.

2. Points may be deducted if methods you add do not have good javadoc specifications.

3. Class HeapTester does all necessary testing. If running HeapTester does not show an error, your class Heap
should be correct.

4. We have declared fields in Heap and written a class invariant for Heap. Study the class invariant. You don’t need
any other fields. Point 5 discusses the reason for the HashMap.

5. Special problem. Class Heap would be fairly easy to write, using just an ArrayList for the heap, except for one
issue. A call changePriority(p, v) changes the priority of value v to priority p. This requires finding value v in the
ArrayList —without any other data structure to help, this could cost time linear in the size of the heap!

To overcome this problem, we do two things:

• Have a static inner class Info whose fields are (1) a priority and (2) an index into the ArrayList. Then,
each item in the ArrayList can be represented by an object of this inner class.

• Have a field of class Heap that is a HashMap<E, Info >, which maps a value in the heap to an object of
class Info that contains its priority and index in the ArrayList.

Of course, when an element in the heap is moved to a different index, the field of the associated element of
class Info that contains its index has to be changed. And, when an element is removed from the heap, it must
be removed from the HashMap too.

Using this technique, the expected time for updating a priority should be O(1) for finding the corresponding
element in the HashMap and then O(log n) for updating the heap. The corresponding worst-case times are
O(n) and O(log n).

6. You would do well to use class ArrayHeap as a good example of how to write the required methods. But the
code has to be changed (in Heap) to take into account three new things:

1. The values in the heap are kept in an ArrayList,

2. The priorities are separate from the values in the heaps, and

3. A HashMap is used to map an element in the heap to an object that contains (a) the index in the Array-
List where the value resides in the heap and (b) the priority of the value.

What to do submit
1. Remove all your println statements from class Heap; 5 points will be deducted if your code outputs anything.

2. In the comment at the top, put the hours hh and minutes mm that you spent on this assignment. Write a few lines
about what you thought about this assignment.

3. Submit (only) file Heap.java on the CMS.

