
CS2110	Fall	2015	 Assignment	A5:	Treemaps	 	 1	

Assignment	5:	Treemaps	

1.	Introduction	
We	continue	our	study	of	recursive	algorithms	and	also	gain	familiarity	with	building	graphical	user	inter-

faces	(GUIs)	and	querying	your	computer’s	file	system.	We	will	ask	you	for	the	time	spent	on	this	assignment,	so	
keep	track.	

The	goal	of	the	program	is	to	display	the	structure	of	a	file	system	using	a	visualization	known	as	a	
treemap.	Each	file	or	directory	is	displayed	as	a	rectangle,	whose	area	is	proportional	to	the	size	of	the	object.	
If	a	file/directory	is	contained	within	another	directory,	the	rectangle	corresponding	to	the	first	is	nested	
within	the	rectangle	corresponding	to	the	second.	Thus,	a	treemap	is	a	hierarchical	structure,	just	like	the	file	
system	itself,	and	it	shows	at	a	glance	the	relative	sizes	of	different	objects	in	the	file	system.	

You	can	read	about	treemaps	at	www.cs.umd.edu/hcil/treemap-history/	and	see	some	nice	animations	at	
https://visualign.wordpress.com/2011/11/09/implementation-of-treemap/	

To	whet	your	appetite,	we	show	in	the	diagram	below	what	your	completed	program	could	produce.	On	
the	left	is	part	of	the	hard-drive	file	structure.	On	the	right	is	the	treemap	of	that	part	of	the	hard	drive,	to	re-
cursion	depth	3.	A	directory	is	selected	on	the	left,	its	path	and	size	are	displayed	above	the	file	structure,	and	
the	corresponding	rectangle	is	displayed	in	orange	on	the	right.	The	biggest	objects	in	a	directory	are	nested	
at	the	top	left	of	the	containing	rectangle,	the	smallest	at	the	bottom	right.	

Click	another	directory	or	file	in	the	left	column,	and	its	rectangle	will	be	highlighted	in	yellow,	as	shown	
in	the	image	on	the	next	page.	Click	on	a	rectangle	in	the	tree	map,	and	it	will	turn	yellow	and	its	name	will	be	
selected	in	the	left	column,	as	shown	in	the	second	image	on	the	next	page.	Note	that	each	orange	rectangle	is	
a	complete	treemap,	nested	within	a	larger	treemap!	

You	can	buy	apps	that	implement	this	functionality.	You	can	also	write	the	program	yourself.	

	



CS2110	Fall	2015	 Assignment	A5:	Treemaps	 	 2	

	

	

	

	



CS2110	Fall	2015	 Assignment	A5:	Treemaps	 	 3	

	

2.	Grading	
Solutions	will	be	graded	on	correctness,	the	quality	of	the	algorithms,	and	style.	A	correct	program	com-

piles	without	errors	and	behaves	according	to	the	requirements	given	in	this	handout	and	the	comments	of	
the	code.	A	program	with	good	style	is	clear,	concise,	and	easy	to	read.		Follow	the	style	guidelines	given	for	
this	course	on	the	course	website.	

3.	Collaboration	policy	and	academic	integrity	
You	may	do	this	assignment	with	one	other	person.	If	you	are	going	to	work	together,	then,	as	soon	as	

possible	—and	at	least	by	the	day	before	you	submit	the	assignment—	get	on	the	CMS	for	the	course	and	do	
what	is	required	to	form	a	group.	Both	people	must	do	something	to	form	the	group:	one	proposes,	the	other	
accepts.	

If	you	do	this	assignment	with	another	person,	you	must	work	together.	It	is	against	the	rules	for	one	per-
son	to	do	some	programming	on	this	assignment	without	the	other	person	sitting	nearby	and	helping.	You	
should	take	turns	“driving”	—using	the	keyboard	and	mouse.	

With	the	exception	of	your	CMS-registered	partner,	you	may	not	look	at	anyone	else's	code,	in	any	form,	or	
show	your	code	to	anyone	else,	in	any	form.	You	may	not	show	or	give	your	code	to	another	person	in	the	
class.	While	you	can	talk	to	others,	your	discussions	should	not	include	writing	code	and	copying	it	down.	

4.	Getting	help	
If	you	don't	know	where	to	start,	if	you	are	lost,	etc.,	please	SEE	SOMEONE	IMMEDIATELY	—a	course	in-

structor,	a	TA,	a	consultant.	Do	not	wait.	A	little	in-person	help	can	do	wonders.	

5.	The	structure	of	the	program	
We	discuss	the	classes	and	what	each	one	does.	Spend	some	time	perusing	the	class	files	to	get	a	sense	of	

the	program.	Reading	well-presented	code,	being	aware	of	how	it	is	written,	is	a	good	idea.	

Class	Boundingbox:	an	instance	describes	a	rectangle	in	the	plane,	by	giving	its	lower	
left	point	and	its	higher	right	point.	Take	a	look	at	it.	It	is	immutable,	and	its	two	
fields	are	public.	One	can	reference	them	directly,	without	getter	methods.	You	
don’t	have	to	code	anything	in	it.	

Class	Block:	an	instance	is	a	BoundingBox	used	in	a	particular	context;	it	represents	
the	rectangle	for	a	file	or	directory	in	the	treemap.	You	don’t	have	to	code	any-
thing	here.	It	has	a	method	paint(Graphics2D),	which	draws	the	rectangle.	Take	a	
look.		

Classes	TreeMap	and	FileTreeMap.	TreeMap	implements	a	general	
treemap,	using	objects	of	inner	class	Node	to	describe	each	node	
of	the	treemap.	Note	that	Node	implements	interface	Compara-
ble,	based	on	the	“weight”	or	“size”	of	the	nodes.	The	fields	of	
TreeMap	are	the	root	node	of	the	tree,	the	selected	node	(if	any),	
and	the	width/height	assigned	to	the	tree.	

TreeMap	contains	recursive	method	sliceAndDice,	which	con-
structs	the	treemap.	You	will	write	this	method.	

FileTreeMap	extends	TreeMap	in	order	to	particularize	the	treemap	for	a	file	system.	It	contains	lookup	
tables	to	map	file	paths	to	treemap	nodes,	and	vice	versa.	

The	only	connection	to	the	GUI	in	these	two	classes	is	recursive	method	TreeMap.Node.paint(Graphics,	…),	
which		paints	the	tree	whose	root	is	that	node	using	the	Graphics	parameter.	Separating	computation	
from	communicating	results	of	that	computation	to	a	user,	is	an	important	part	of	good	design.	

	
	

FileTreeMap 

TreeMap 

inner class Node 

	Comparable 

	
	

BoundingBox 

Block 

	



CS2110	Fall	2015	 Assignment	A5:	Treemaps	 	 4	

Classes	TreeMapView	and	FileTreeMapView.	TreeMapView	is	the	JPanel	on	which	the	treemap	is	painted.	
One	field	of	this	class	is	the	treemap	itself,	of	class	
TreeMap.	The	class	listens	to	the	resizing	of	the	component	
—i.e.	the	JPanel—	in	which	case	the	whole	treemap	has	to	
be	recomputed	again.	This	class	is	short	and	simple.	

Subclass	FileTreeMapView	particularizes	TreeMapView	to	
this	special	implementation	of	a	treemap	for	a	file	system.	
Its	major	functionality	is	to	provide	procedure	selection-
Changed,	which	is	required	by	interface	FileSelection-
Listener.	Given	a	path	for	a	file	or	directory	(selected	from	
the	panel	on	the	left),	this	procedure	finds	it	in	the	
treemap,	selects	it,	and	then	repaints	so	that	its	corresponding	rectangle	in	the	treemap	will	become	or-
ange.	

Class	FileTreePanel.	This	subclass	of	JPanel	contains	the	files	and	
directories	that	appear	in	the	left	part	of	the	GUI.	We	found	this	
class	on	the	web;	it	was	written	by	Kirill	Grouchnikov.	We	
changed	it	slightly	to	fit	our	needs.	We	don’t	understand	all	of	it;	
we	just	use	it.	

This	class	implements	TreeSelectionListener	so	that	it	can	re-
spond	to	single	clicks	to	select	a	file	or	directory	and	double	clicks	
to	open	or	close	a	directory.	

This	class	has	procedure	main,	so	it	can	be	run	as	an	application.	We	used	this	procedure	when	we	first	
began	using	the	class	to	see	how	it	worked	and	to	modify	it	slightly.	

Class	GUI.	This	class	extends	JFrame,	so	an	instance	is	associated	with	a	
window	on	your	monitor.	It	has	method	main,	to	create	an	instance	of	
the	GUI	and	start	the	program	running.	It	places	all	components	in	the	
JFrame,	as	you	might	expect,	and	it	implements	ActionListener	so	that	it	
can	listen	to	clicks	on	the	two	buttons.	When	either	of	the	buttons	in-
crease-recursion-depth	and	decrease-recursion-depth	are	pressed,	
method	actionPerformed	causes	the	treemap	to	be	recomputed	by	call-
ing	recomputeTreeMap.	

Class	GUI	has	an	inner	class,	MouseEvents	—as	discussed	in	lecture.	Its	
method	mouseClicked	is	called	to	process	a	click	in	the	treemap	(to	se-
lect	a	file).	That	method	calls	function	getNodeContaining	to	retrieve	the	node	and	select	it	in	the	file	tree.	

Looking	at	the	whole	program	as	one	big	entity	can	be	daunting.	There	is	a	lot	there.	But	choose	one	piece	
of	it,	as	shown	above,	and	study	it	carefully,	and	it	begins	to	make	sense.	Break	a	large	problem	into	smaller	
pieces,	making	each	piece	as	independent	as	possible	—i.e.	making	the	interfaces	between	them	small.	That	is	
the	way	to	solve	larger	problems.	

6.	Your	task	
Download	a5release.zip	and	add	the	enclosed	files	to	a	new	project	in	

Eclipse.	Your	project	structure	should	look	like	the	image	on	the	right.	

Note:	You	are	responsible	for	information	put	into	pinned	Piazza	note	@665,	
A5	FAQs,	which	already	has	stuff	in	it.	We	have	posted	explanations	of	parts	of	
the	assignment	on	@665.	Look	at	@665	before	asking	a	question,	please!	

You will	be	making	changes	to	FileTreeMap.java,	TreeMap.java,	and	
GUI.java,	in	that	order.	When	you	begin	working	on	each	method,	first	look	in	
Piazza	note	@655	for	information	and	explanations.	Let’s	take	them	one	by	one.	

	
	

FileTreePanel 

JPanel 
	

TreeSelection-
Listener 

	
	

GUI 

JFrame 
	

Action 
Listener 

(inner class 
MouseEvents) 

JPanel 	
	Component- 

Listener 

TreeMapView 

FileTreeMapView 

FileSelection- 
Listener 



CS2110	Fall	2015	 Assignment	A5:	Treemaps	 	 5	

Class	FileTreeMap:	function	size(int	d,	File	f)	

This	class	specializes	a	treemap	to	display	a	file	system.	You	need	to	write	function	size(int	d,	File	f),	which	
computes	the	size	of	file	or	directory	f,	up	to	a	maximum	recursion	depth	of	d.	The	purpose	of	having	you	
write	this	function	is	to	learn	about	how	one	deals	with	class	File.	

Class	TreeMap:	functions	.getSplit			and			sliceAndDice	
• Your	job	is	to	code	the	“slice-and-dice”	algorithm	for	computing	a	treemap	(see	Section	7).	The	meth-

ods	you	need	to	complete	are:		

• TreeMap.getSplit			and			TreeMap.sliceAndDice	

You	can	do	some	testing	using	a	JUnit	testing	class,	and	we	suggest	you	do	this	at	least	for	Node.getSplit.	

Procedure	TreeMap.main	is	there	for	you	to	be	able	to	test	TreeMap	independently	of	other	parts	of	the	
code.	Manually	create	some	TreeMap	objects	and	either	print	them	(TreeMap.printTree)	or,	even	better,	fig-
ure	out	how	to	create	a	simple	JFrame	and	display	the	treemap	(TreeMap.paint)	on	it.	We	will	not	look	at	it.	

Class	GUI:	functions	GUI.MouseEvents.mouseClicked			and			GUI.actionPerformed	

This	class	contains	the	code	for	the	main	JFrame,	including	the	bit	that	processes	mouse	clicks	on	the	
treemap:	GUI.MouseEvents.mouseClicked.	You	have	to	write	this	method.	To	do	this,	you	need	to	find	out	
which	leaf	node	of	the	treemap	was	clicked	and	select	the	corresponding	file/directory	in	the	hierarchy	on	
the	left.		

Method	GUI.actionPerformed	is	called	when	a	GUI	button	is	clicked	to	increase	or	decrease	the	recursion	
depth.	You	have	to	write	this	method.	You	need	to	figure	out	which	button	was	clicked	and	recompute	the	
treemap	appropriately.	

The	purpose	of	having	you	write	these	methods	is	to	get	you	to	work	with	GUIs	a	bit.	

7.	Building	a	treemap	
A	treemap	is	built	recursively,	as	shown	below.	It	is	given	a	rectangle	r	in	which	the	treemap	will	go.	

			 //	Lay	out	a	treemap	for	directory	d	in	onscreen	rectangle	r	
	 Algorithm	TREEMAP(d,	r):	

List	all	the	immediate	children	(files	and	subdirectories)	of	d	in	descending	
order	by	size	(stop	if	the	maximum	desired	recursion	depth	
has	been	reached	or	there	are	no	children)	

Call	procedure	LAYOUT(children,	0,	#children	-1,	r),	which	assigns	to	each	child	a	rectangle	of	
area	proportional	to	its	size,	nested	within	r	

For	each	child	c	with	assigned	rectangle	s:	Call	TREEMAP	(c,	s)	
	

You	will	write	the	LAYOUT	procedure.	It	can	be	implemented	in	many	different	ways.	The	one	we	use	is	
called	“slice-and-dice”.	This	is	itself	a	recursive	algorithm!	We	give	a	high-level	explanation	of	it	below	
(SplitRatio	is	a	predefined	constant	between	0	and	1).	But	also	see	the	comments	in	the	method	in	the	code	
itself,	which	gives	a	step-by-step	set	of	instructions	to	implement.	



CS2110	Fall	2015	 Assignment	A5:	Treemaps	 	 6	

//	Partition	rectangle	r	into	subrectangles	corresponding	to	nodes.	The	area	of	
//	each	subrectangle	is	proportional	to	the	size	of	the	associated	node	in	node[m..n].	
//	Precondition:	list	nodes	is	sorted	in	descending	order	by	size	
Algorithm	LAYOUT-SLICEANDDICE(nodes,	m,	n,	r):	

If	nodes[m..n]	is	empty,	do	nothing	and	return	
If	nodes[m..n]	s	has	just	one	element,	allocate	it	the	entire	rectangle	r	and	return	
Select	the	smallest	h	such	that	the	sum	of	te	sizes	of	

nodes[m..h]	is	at	least	SplitRatio	times	the	total	size	of	nodes[m..]	
Split	r	into	two	parts	s	and	t	according	to	SplitRatio	along	

its	longer	side	(to	avoid	very	narrow	shapes)	
Assign	nodes[m..h]	to	split-off	part	s	and	nodes[h+1..n]	to	rectangle	t	
Call	LAYOUT-SLICEANDDICE(nodes,	m,	h,	s)	
Call	LAYOUT-SLICEANDDICE(nodes,	h+1,	n,	t)	

8.	What	to	submit	
In	the	comment	at	the	top	of	file	GUI.java,	replace	hh	and	mm	by	the	hours	and	minutes	you	spent	on	this	

assignment.	Replace	BOTH	of	them	with	integers.	Please	be	careful	in	doing	so.	A	program	extracts	this	data,	
and	if	you	change	anything	other	than	hh	and	mm,	you	screw	up	the	program.	Put	in	your	name	and	Netid	and	
tell	us	what	you	thought	about	the	assignment.	Submit	a	.zip	file	that	contains	all	the	.java	programs	in	the	src	
directory	of	the	project.	


