
���1CS2110 Fall 2015 Assignment A3. Linked Lists Due on the CMS by: See the CMS

Linked Lists

Preamble
This assignment begins our discussions of data structures. In this assignment, you will implement a data struc-

ture called a doubly linked list. Read the whole handout before starting. Near the end, we give important instructions
on testing.

At the end of this handout, we tell you what and how to submit. We will ask you for the time spent in doing A3,
so please keep track of the time you spend on it. We will report the minimum, average, and maximum.

Learning objectives
• Learn about and master the complexities of doubly linked lists.
• Learn a little about inner classes.
• Learn and practice a sound methodology in writing and debugging a small but intricate program.

Collaboration policy and academic integrity

You may do this assignment with one other person. Both members of the group should get on the CMS and do
what is required to form a group well before the assignment due date. Both must do something to form the group:
one proposes, the other accepts.

People in a group must work together. It is against the rules for one person to do some programming on this as-
signment without the other person sitting nearby and helping. Take turns “driving” —using the keyboard and mouse.

With the exception of your CMS-registered group partner, you may not look at anyone else's code, in any form,
or show your code to anyone else (except the course staff), in any form. You may not show or give your code to an-
other student in the class.

Getting help

If you don't know where to start, if you don't understand testing, if you are lost, etc., please SEE SOMEONE
IMMEDIATELY —an instructor, a TA, a consultant. Do not wait. If you find yourself spending more than an hour or
two on one issue, not making any progress, STOP and get help. Some pondering and thinking with no progress is
helpful, but too much of it just wastes your time. A little in-person help can do wonders. See the course webpage for
contact information.

Singly linked lists
The diagram below represents the list of values [6, 7, 3]. The leftmost object, LL@7, is called the header. It con-

tains two values: the size of the list, 3, and a pointer to the first node of the list. Each of the other three objects, of
class M, contains a value of the list and a pointer to the successor node of the list —or null if there are no more
nodes in the list. This data structure is call a singly linked list, or just linked list.

One chooses a data structure that optimizes a program in some way, making the most frequently used operations
as fast as possible. For example, maintaining a list in an array has the advantage that any element, say number i, can

	 	 	 	 6data

	 	 M@8succ

	 	 	 M@1	 	 	 LL@7

	 	 	 M@1head

	 	 	 	 3size
	 LL@7d

	 	 	 	 7data

	 	 M@2succ

	 	 	 M@8

	 	 	 	 3data

	 nullsucc

	 	 	 M@2

���2CS2110 Fall 2015 Assignment A3. Linked Lists Due on the CMS by: See the CMS

be referenced in constant time, using (typically) b[i]. But maintaining a list in an array has disadvantages: (1) The
size of the array has to be determined when the array is first created, (2) One needs a variable that contains the num-
ber of values in the list, and (3) Inserting or removing values at the beginning takes time proportional to the size of
the list.

A singly linked list has these advantages: (1) The list can be any size, and (2) Inserting (or removing) a value at
the beginning can be done in constant time. It takes just a few operations, bounded above by some constant: Create a
new object and change a few pointers. On the other hand, to reference element i of the list takes time proportional
to i—one has to sequence through all the nodes 0..i-1 to find it.

Exercise
At this point, you will gain more understanding by doing the following, to construct a linked list that represents

the sequence [4, 6, 7, 3]. Do what follows, don’t just read it. (1) Copy the linked list diagram shown near the bottom
of the previous page. (2) Below that diagram, draw a new object of class M , with 4 in field data and null in field
succ. (3) Now change field succ of the new node to point to node M@1 and change field head to point to the
new node. (4) Finally, change field d.size to 4. The diagram now represents the list [4, 6, 7, 3].

Doubly linked lists
A singly linked list has field head in the header and field succ in each node, as shown above. A doubly linked

list has, in addition, a field tail in the header and a field pred in each node, as shown below. In the diagram be-
low, one can traverse the list of values in reverse: first d.tail.data, then d.tail.pred.data, then
d.tail.pred.pred.data. This doubly linked lists represents the same sequence [6, 7, 3] as the singly linked
list given above —but the data structure lets us easily enumerate the values in reverse, [3, 7, 6], as well as forward.

The major advantage of a doubly linked list over a singly linked list is that, given a node n (containing some-
thing like M@8), one can get to n’s predecessor and successor in constant time. For example, removing node n from
the list can be done in constant time, but in a singly linked list, the time may depend on the length of the list (why?).

In A3, you will implement a doubly linked list using the representation below. The header will be of class
DLinkedList (abbreviated LL below), and nodes will objects of class Node (given by M below), Study this dia-
gram carefully. All further work rests on understanding this data structure.

We often write such linked lists without the tabs on the objects and even without names in the pointer fields, as
shown below. No useable information is lost, since the arrows take the place of the object pointer-names.

	 	 	 LL@7

	 	 	 M@1head

	 	 	 	 3size

	 	 	 M@2tail

LL@7d

	 	 M@8succ

	 	 	 	 6data

	 nullpred

	 	 	 M@1

	 	 M@1pred

	 	 	 	 7data

	 	 M@2succ

	 	 	 M@8

	 	 M@8pred

	 	 	 	 3data

	 nullsucc

	 	 	 M@2

	 head

	 	 3size

tail

d

succ

	 	 	 	 6data

	 nullpred pred

	 	 	 	 7data

succ

pred

	 	 	 	 3data

	 nullsucc

���3CS2110 Fall 2015 Assignment A3. Linked Lists Due on the CMS by: See the CMS

A doubly linked list allows the following operations to be executed in “constant time” —using just a few as-
signments and perhaps if-statements— to append a value to the list, prepend a value (insert an element at the begin-
ning of the list), insert a value before or after a given element, and delete a value. It will be your job to implement
these operations in constant time. In an array implementation of such a list, most of these operations could take time
proportional to the length of the list in the worst case.

This assignment
This assignment gives you a skeleton for class DLinkedList<E> (where E is any class-type). The class also

contains a definition of Node (it is an inner class; see below) and asks you to complete several methods. The meth-
ods to write are indicated in the skeleton. You must also develop a JUnit test class, DLinkedListTester, that
thoroughly tests the methods you write. We give important directions on writing and testing/debugging below.

Generics
The definition of the doubly linked list class has DLinkedList<E> in its header. Here, E is a “type

parameter”. To declare a variable v of that class, use the following to create a linked list whose values are of type
Integer:

DLinkedList<Integer> v; // (replace Integer by any class-type you wish)

Similarly, create an object whose list-values will be of type String using the new-expression:

new DLinkedList<String>()

We will introduce you to generic types more thoroughly later in the course.

Inner classes
Class Node is declared as a public component of class DLinkedList. It is called an inner class. Its fields and

some of its methods are private, so you cannot reference them outside class DLinkedList, e.g. in a JUnit testing
class. But the methods in DLinkedList can and should refer to the fields of Node, even though they are private,
because Node is a component of DLinkedList. Thus, inner classes provide a useful way to allow one class but
not others to reference the components of the inner class. We will discuss inner classes in depth in a later recitation.

The constructor in class Node is private. The only way to get an object of class Node is to use one of
DLinkedList’s functions. For example, in the JUnit testing class, to obtain the first node of doubly linked list b
of Integers and store it in variable node, use:

DLinkedList<Integer>.Node node= b.getHead();

What to do for this assignment
1. Start a project a3 (or another name) in Eclipse, download file DLinkedList.java from the CMS, and put that

file into a3, in the default package. Insert into a3 a new JUnit test class (menu item File -> New -> JUnit Test
Case) named DLinkedListTester.java. Inner class Node is complete; you do not have to and should not
change it. Write the 7 methods indicated in class DLinkedList.java, testing each thoroughly in the JUnit test
class.

2. On the first line of file DLinkedList.java, replace nnnn by your netids and hh and mm by the hours and
minutes you spent on this assignment. If you are doing the project alone, replace only the first nnnn. Please do all

���4CS2110 Fall 2015 Assignment A3. Linked Lists Due on the CMS by: See the CMS

this carefully. If the minutes is 0, replace mm by 0. We wrote a program to extract these times, and when you
don’t actually replace hh and mm but instead write in free form, that causes us trouble. Also, please take a few
minutes to tell us what you thought of this assignment.

3. Submit the assignment (both classes) on the CMS before the end of the day on the due date.

Grading: Each of the 7 methods you write is worth 10 points. The testing of each is worth 4-5 points: we will look
carefully at class DLinkedListTester. If you don’t test a method properly, points might be deducted in two
places: (1) the method might not be correct and (2) it was not tested properly.

Further guidelines and instructions
Note that some methods that you have to write have an extra comment in the body, giving more instructions and

hints on how to write it. Follow these instructions carefully. Also, in writing methods 4..7, writing them in terms of
calls on previously written methods may save you time.

Writing a method that changes the list: Five of the methods you write change the list in some way. These methods
are short, but you have to be extremely careful to write them correctly. It is best to draw the linked list before the
change; draw what it looks like after the change; note which variables have to be changed; and then write the code.
Not doing this is sure to cause you trouble.

Be careful with a method like prepend(v) because a single picture does not tell the whole story. Here, two cas-
es must be considered: the list is empty and it is not empty. So two sets of before-and-after diagrams should be
drawn. This will probably mean a method with two cases, using and if-statement.

Methodology on testing: Write and test one group of methods at a time! Writing all and then testing will waste your
time, for if you have not fully understood what is required, you will make the same mistakes many times. Good pro-
grammers write and test incrementally, gaining more and more confidence as each method is completed and tested.

Determining what test cases to use: In testing a method, you must do two things (1) make sure that each statement
of the method is exercised in at least one test case. Thus, if the method has an if-statement, at least two test cases are
required. (2) Ensure that “corner cases” or extreme cases are tested. In the context of doubly linked lists, an empty
list and a list may be an extreme case, depending what is done to the list. When finished with a method, to determine
test cases, look carefully at the code, based on the above points (1) and (2).

What to test and how to test it: Determining how to test a method that changes the linked list can be time consum-
ing and error prone. For example: after inserting 6 before 8 in list [2, 7, 8, 5)], you must be sure that the list is now
[2, 7, 6, 8, 5]. What fields of what objects need testing? What pred and succ fields? How can you be sure you
didn’t change something that shouldn’t be changed?

To remove the need to think about this issue and to test all fields automatically, you must must must do the follow-
ing. In class DLinkedList, FIRST write functions toString and toStringRev, as best you can. In writing
them, do not use field size. Instead, use only fields head and tail in class DLinkedList and the pred,
succ, and data fields of nodes. Do not put in JUnit testing procedures for toString and toStringRev, be-
cause they will be tested when testing method prepend, just as getters were tested in testing a constructor in A1.

For example, after completing toString and toStringRev, you can test that they work properly on the emp-
ty list using this method:

 @Test
 public void testConstructor() {
 DLinkedList<Integer> b= new DLinkedList<Integer>();
 assertEquals(“[]”, b.toString());
 assertEquals(“[]”, b.toStringRev());
 assertEquals(0, b.size());

���5CS2110 Fall 2015 Assignment A3. Linked Lists Due on the CMS by: See the CMS

 }

Testing function prepend will fully test toString and toStringRev. You are testing those three functions
together. Each call on prepend will be followed by 3 assertEquals calls, similar to those in testCon-
structor, followed by a test that the returned value is correct:

 @Test
 public void testPrepend() {
 DLinkedList<String> ll= new dLinkedList<String>();
 DLinkedList<String>.Node n= ll.prepend("Foster");
 assertEquals(“[Foster]”, ll.toString());
 assertEquals(“[Foster]”, ll.toStringRev());
 assertEquals(1, ll.size());
 assertEquals(ll.getHead(), n);
 }

Testing all your functions 4..7 will have similar assertEquals calls. That way, you don’t have to think about what
fields to test; you test them all.

Would you have thought of using toStringRev and toStringRev like this? It is useful to spend time
thinking not only about writing the code but also about how to simplify testing.

