
CS2110, Fall 2015. Preparing for Prelim 1

Prelim: 5:30 Thursday, 1 October, Olin 155
(For students whose last name begins with A..L)

Prelim: 7:30 Thursday, 1 October, Olin 155

(For students whose last name begins with M..Z)

If you have a conflict that prohibits you from taking the exam at the assigned time, you MUST
complete assignment P1Conflict on the CMS before the end of Thursday, 24 March (or, in one
case, email Megan Gatch). (If you can’t take it at the assigned time, you can take it at the other
time; we just need to know about it.) That assignment requires you to give us details. Read the
statement about P1Conflict on the course exam webpage about what to say in assignment
P1Conflict: www.cs.cornell.edu/courses/CS2110/2015fa/exams.html.

If you can take the prelim at the assigned time, do NOT complete assignment P1Conflict.

Review session: Sunday, 27 September, Kimball B11, 1:00 - 3:00.

This handout explains what you have to know for the first prelim. The course website contains
several previous CS2110 prelims. To prepare for the prelim, you can (1) practice writing Java
programs/methods in Eclipse, (2) read the text, (3) memorize definitions, principles, and (4) study
past prelims, on the course website, (5) Do what is suggested in piazza note @248 on Study Hab-
its.

In looking at past prelims, if you see a question that is outside the scope of the prelim as defined
below, then skip that question. Please do not ask on the Piazza “is this topic covered on the pre-
lim”? You shouldn’t have to do that if you look at this handout for the answer. If you don’t find
the answer here, then ask.

A good summary of OO is provided in JavaSummary.pptx (or pdf): ~75 slides, with a 2-page in-
dex into the slides; use the slides rather than the pdf version so that you can use the animation in
them to review stuff. Find a link to them on the Resources page of the course website.

Prelim 1 covers material all material in lectures/recitations through Tuesday, 22 Sept., on loop
invariants. Here is more detail:

1. Java strong typing: everything has to be declared before it can be used. The primitive types int,
double, char, boolean (know the basic operations on them). The corresponding wrapper classes
Integer, Double, Character, Boolean. You don’t have to know the detailed methods in each wrap-
per class, but know the two reasons for having wrapper classes (be able to treat a primitive-type
value as an object; provide useful static fields and methods). Understand casting between numeric
types and the fact that char is a numeric type. Autoboxing and unboxing.

2. OO. This is a big one. Master the following:
(a) Declaration of a variable
(b) Declaration of a class and subclass
(c) What fields/methods a subclass object has
(d) Putting in the class invariant as a com-

ment —the definitions of fields and con-
straints on them

(e) Access modifiers public and private
(f) Getter/setter methods
(g) Declarations of functions, procedures,

constructors
(h) What the name of an object is
(i) Evaluation of a new-expression
(j) Value null
(k) Static versus non-static
(l) Two uses of this and super
(m) Constructors: purpose. Principle that su-

perclass fields are initialized first. What
the first statement in a constructor body

CS2110, Fall 2015. Preparing for Prelim 1

must be. What Java inserts in a class if
there is no constructor.

(n) Overloading method names
(o) Overriding methods
(p) Class Object, and the class hierarchy.

What Object.toString() and Object.equals
(Object) return.

(q) Casting among class types –widening and
narrowing, the latter can be done auto-
matically.

(r) Type of a variable v and its use in deter-
mining, say, whether v.m(…) is legal.

(s) Reason for making a class abstract; rea-
son for making a method in an abstract
class abstract.

(t) Four kinds of variable in Java: field, class
variable (static), parameter, local variable

(u) Use of arrays (note: an array is an object):
declaration of 1-2 dimensional arrays,

length field, how one references an ele-
ment (e.g. b[i]). Be able to write methods
that use arrays, using appropriate syntax.

(v) Simple generic types and their use ---e.g.
ArrayList<JFrame>, LinkedList<Integer>
Java type checking rules for calling a
method that expects a generic type for
one of its arguments.

(w) Interface declaration and implementing
an interface —what that means. Casting
with interfaces.

(x) Knowledge of interface Comparable and
its abstract method. Basic understanding
of the collection hierarchy: List<T>,
Set<T>, ArrayList<T>, HashSet<T>.

(y) Exception handling: class Throwable;
how to throw an exception; the try state-
ment, with its try-block and catch-blocks.

3. Class String. You may be asked to write code that uses class String. Know methods charAt, indexOf,
lastIndexOf, contains, substring, length. You are welcome to use other methods too, but we’ll test on this
subset.

4. Know how to use class ArrayList —how one creates an object of that class, adds elements to it, de-
letes elements, and accesses its size. If any other methods are needed to answer a question, we will define
them for you.

5. Recursion. Know how to write a recursive function. Know the difference between how it executes (in
terms of placing a frame for a call on the stack of stack frames) and how one understands a recursive
function (Understand the body in terms of a recursive call doing what the specification says, not how it
gets executed.). Know the steps in executing a method call.

7. Linked lists. Know the basic concept of a linked list, what a Node looks like. Be able to code simple
methods dealing with linked lists. Understand the difference between a singly linked list, a linked list with
header, and a doubly linked list. Basically, assignment A3 gave you this knowledge.

8. Loop invariants. Understand a loop in terms of a loop invariant and the four loopy questions: Start
(make invariant true)? Stop (invariant together with false loop condition imply result)? Progress (loop
body makes progress toward termination)? Invariant (repetend keeps the loop invariant true)? Be able to
develop a loop given the precondition, postcondition, and loop invariant.

