
1	

This recitation	

1	

•  An interesting point about A2: Using previous methods to
avoid work in programming and debugging. How much time
did you spend writing and debugging prepend?	

•  Enums (enumerations)	

•  Generics and Java’s Collection interfaces and classes	

•  Parsing arithmetic expressions using a grammar that gives
precedence to * and / over + and – (if there is time)	

How to use previous methods in A2	

2	

The A2 handout contained this:	

Did you read that? Think about it? Attempt it?	

Further guidelines and instructions!	

“Note that some methods that you have to write …. Also,
in writing methods 4..7, writing them in terms of calls	

on previously written methods may save you time.”	

A lesson in:	

1.  Reading carefully, wisely.	

2.  Thinking about what methods do, visualizing what they do.	

3	

head	
 	

 	

pred succ	

Legend	

 	

…	
 	
 	

…	

Suppose we want to append e to this list:	

e	
 	

 	

This is what it looks like after the append:	

head	
 	

e	
 	

…	
 	
 	

…	

What if we prepended e instead of appending it?	

4	

head	
 	
 …	
 	
 	

…	

 	

What append does:	

head	
 	

e	
 	

…	
 	
 	

…	

 	

What prepend does:	

head	
 	

e	
 	

…	
 	
 	

…	

Therefore: prepend(v); can be done by 	

 append(v); head= head.pred; 	
 body of prepend	

5	

 	

head	
 	

e	
 	

…	
 	
 	

…	

 	

head	
 	

e	
 	

…	
 	
 	

…	

prepend(v) is simply append(v); head= head.pred; 	

What append
does	

What prepend
does	

Morals of the story:	

1.  Read carefully.	

2.  Visualize what methods do;

understand specs completely.	

3.  Avoid duplication of effort by

using previously written
methods	

How much time did you
spend writing and debug-
ging prepend?	

Did you try to write
prepend in terms of
append?	

About enums (enumerations)	

6	

An enum: a class that lets you create mnemonic names for
entities instead of having to use constants like 1, 2, 3, 4	

	

The declaration below declares a class Suit.	

After that, in any method, use Suit.Clubs, Suit.Diamonds, etc.
as constants.	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

could be private,	

or any access
modifier	

new	

keyword	

The constants of the class
are Clubs, Diamonds,
Hearts, Spades	

2	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

7	

Clubs	
 Suit@0	

Diamonds	
 Suit@1	

Hearts	
 Suit@2	

Spades	
 Suit@3	

Suit@0	

	

	

	

Suit	

Suit@2	

	

	

	

Suit	

Suit@3	

	

	

	

Suit	

Suit@1	

	

	

	

Suit	

Clubs, Diamonds,
Hearts, Spades	

Are static variables of
class enum	

Four static final variables that contain pointers to objects	

8	

Testing for an enum constant	

8	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

Suit s= Suit.Clubs;	

Then	

s == Suit.Clubs is true s == Suit.Hearts is false	

switch(s) {	

 case Clubs:	

 case Spades:	

 color= “black”; break;	

 case Diamonds:	

 case Hearts:	

 color= “red”; break;	

}	

Can use a switch statement	

Type of s is Suit.	

	

Inside the switch,
you cannot write
Suit.Hearts instead
of Hearts	

9	

Miscellaneous points about enums	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

1. Suit is a subclass of Enum (in package java.lang)	

This declaration is shorthand for a class that has a constructor,	

four constants (public static final variables), a static method, and
some other components. Here are some points:	

2. It is not possible to create instances of class Suit, because
its constructor is private!	

3. It’s as if Clubs (as well as the other three names) is
declared within class Suit as	

 public static final Suit Clubs= new Suit(some values);	

You don’t care what values	

Miscellaneous points about enums	

10	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

4. Static function values() returns a Suit[] containing
the four constants. You can, for example, use it to
print all of them:	

 for (Suit s : Suit.values())	

 System.out.println(s);	

Output:	

Clubs	

Diamonds	

Hearts	

Spades	

toString in object Clubs returns the
string “Clubs”	

Can save this array in a static variable and use it over and over:	

 private static Suit[] mine= Suit.values();	

Miscellaneous points about enums	

11	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

5. Static function valueOf(String name) returns the
enum constant with that name:	

 Suit c= Suit.valueOf(“Hearts”);	

After the assignment,
c contains (the name
of) object Hearts	

c	
 Suit@2	

Suit@2	

	

	

	

Suit	
This is the object
for Hearts:	

Miscellaneous points about enums	

12	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

6. Object Clubs (and the
other three) has a function
ordinal() that returns it
position in the list	

This declaration is shorthand for a class that has a constructor,	

four constants (public static final variables), a static method, and
some other components. Here are some points:	

We have only touched the surface of enums. E.g. in an enum
declaration, you can write a private constructor, and instead
of Clubs you can put a more elaborate structure. All this is
outside the scope of CS2110.	

Suit.Clubs.ordinal() is 0	

Suit.Diamonds.ordinal() is 1	

3	

13	

Package java.util has a bunch of classes called the
Collection Classes that make it easy to maintain sets
of values, list of values, queues, and so on. You
should spend some time looking at their API
specifications and getting familiar with them.	

	

	

Remember:	

A set is a bunch of distinct (different) values. No
ordering is implied	

A list is an ordered bunch of values. It may have
duplicates.	

14	

Interface Collection: abstract methods for
dealing with a group of objects (e.g. sets, lists)	

Abstract class AbstractCollection: overrides some
abstract methods with methods to make it easier to
fully implement Collection	

AbstractList, AbstractQueue, AbstractSet, AbstractDeque
overrides some abstract methods of AbstractCollection with
real methods to make it easier to fully implement lists,
queues, set, and deques	

Next slide contains classes that you should become familiar
with and use. Spend time looking at their specifications.
There are also other useful Collection classes	

15	

Class ArrayList extends AbstractList: An object is a
growable/shrinkable list of values implemented in an array	

Class Arrays: Has lots of static methods for
dealing with arrays —searching, sorting, copying,
etc.	

Class HashSet extends AbstractSet: An object maintains a
growable/shrinkable set of values using a technique called
hashing. We will learn about hashing later.	

Class LinkedList extends AbstractSequentialList: An object
maintains a list as a doubly linked list	

Class Stack extends Vector: An object maintains LIFO (last-
in-first-out) stack of objects	

Class Vector extends AbstractList: An object is a growable/
shrinkable list of values implemented in an array. An old
class from early Java	

ArrayList	

16	

ArrayList v= new ArrayList ();	

ArrayList@x1	

ArrayList	

Object	

defined in package java.util	

Fields that	

contain a list of objects	

(o0, o1, …, osize()-1)	

ArrayList () add(Object)	

get(int) size()	

remove(…) set(int, Object)	

…	

v	
 ArrayList@x1	

Vector	

An object of class ArrayList
contains a growable/shrinkable
list of elements (of class Object).
You can get the size of the list,
add an object at the end, remove
the last element, get element i,
etc. More methods exist! Look at
them! 	

HashSet 	

17	

HashSet s= new HashSet();	

HashSet@y2	

Hashset	

Object	

Fields that	

contain a setof objects	

{o0, o1, …, osize()-1}	

HashSet() add(Object)	

contains(Object) size()	

remove(Object) 	

…	

s	
 HashSet@y2	

HashSet	

An object of class HashSet
contains a growable/
shrinkable set of elements
(of class Object). You can
get the size of the set, add an
object to the set, remove an
object, etc. More methods
exist! Look at them! 	

Don’t ask what “hash” means.
Just know that a Hash Set
object maintains a set	

Iterating over a HashSet or ArrayList	

18	

HashSet s= new HashSet();	

… code to store values in the set …	

for (Object e : s) {	

 System.out.println(c);	

}	

HashSet@y2	

HashSet	

Object	

Fields that	

contain a setof objects	

{o0, o1, …, osize()-1}	

HashSet() add(Object)	

contains(Object) size()	

remove(Object) 	

…	

s	
 HashSet@y2	

HashSet	

A loop whose body is executed
once with e being each element
of the set. Don’t know order in
which set elements processed	

Use same sort of loop to process
elements of an ArrayList in the
order in which they are in the
ArrayList .	

4	

Format of ArrayList object	
19	
ArrayList	

AbstractList	

AbstractCollection	

Object	

List	

Collection	

Iterable	

List	

Collection	

Iterable	
Collection	

Iterable	

Iterable
Not

discussed
today	

Interface Collection: abstract methods for
dealing with a group of objects (e.g. sets, lists)	

Abstract class AbstractCollection: overrides some
abstract methods with real methods to make it
easier to fully implement Collection	

ArrayList
implements
3 other
interfaces,
not shown	

Format of ArrayList object	
20	
Vector	

AbstractList	

AbstractCollection	

Object	

List	

Collection	

Iterable	
List	

Collection	

Iterable	
Collection	

Iterable	

Iterable
Not

discussed
today	

Interface List: abstract methods for dealing with a list
of objects (o0, …, on-1). Examples: arrays, Vectors	

Abstract class AbstractList: overrides some
abstract methods with real methods to make it
easier to fully implement List	

Homework:
Look at API
specifications
and build
diagram giving
format of
HashSet	

Generics and Java’s Collection Classes	

21	

ge·ner·ic adjective \jə̇ˈnerik, -rēk\	

relating or applied to or descriptive of all members of a genus,
species, class, or group: common to or characteristic of a whole
group or class: typifying or subsuming: not specific or individual.	

From Wikipedia: generic programming: a style of computer
programming in which algorithms are written in terms of to-be-
specified-later types that are then instantiated when needed for
specific types provided as parameters.

In Java: Without generics, every Vector ���
object contains a list of elements of class Object. Clumsy	

With generics, we can have a Vector of Strings, a Vector of
Integers, a Vector of Genes. Simplifies programming, guards
against some errors	

Read carefully!	

Generics: say we want an ArrayList of only one class	

22	

API specs: ArrayList declared like this:	

public class ArrayList <E> extends AbstractList<E>���
 implements List<E> … { … }	

Means:	

Can create Vector specialized to certain class of objects:	

vs.add(3);	

vi.add(“abc”);	

These are illegal	

int n= vs.get(0).size();	

vs.get(0) has type String	

No need to cast	

ArrayList <String> vs= new ArrayList <String>(); //only Strings	

ArrayList <Integer> vi= new ArrayList <Integer>(); //only Integers	

ArrayList to maintain list of Strings is cumbersome 	

23	

ArrayList v= new ArrayList ();	

… Store a bunch of Strings in v …	

// Get element 0, store its size in n	

ArrayList @x1	

ArrayList 	

Object	

Fields that	

contain a list of objects	

(o0, o1, …, osize()-1)	

Vector() add(Object)	

get(int) size()	

remove() set(int, Object)	

…	
v	
 ArrayList@x1	
 ArrayList 	

—Only Strings, nothing else	

String ob= ((String) v.get(0)).length();	

int n= ob.size(); 	

All elements of v are of type Object.	

So, to get the size of element 0, you	

first have to cast it to String.	

Make mistake, put an Integer in v?	

May not catch error for some time.	

Generics allow us to say we want Vector of Strings only	

24	

API specs: Vector declared like this:	

public class Vector<E> extends AbstractList<E>���
 implements List<E> … { … }	

Full understanding of generics is not given in this recitation.	

E.g. We do not show you how to write a generic class.	

	

Important point: When you want to use a class that is defined
like Vector above, you can write	

 Vector<C> v= new Vector<C>(…);	

to have v contain a Vector object whose elements HAVE to be of
class C, and when retrieving an element from v, its class is C.	

5	

Parsing Arithmetic Expressions	

25	

We show you a real grammar for arithmetic expressions with
integer operands; operations +, -, *, /; and parentheses (). It
gives precedence to multiplicative operations.	

We write a recursive descent parser for the grammar and have
it generate instructions for a stack machine (explained later).
You learn about infix, postfix, and prefix expressions.	

Introduced in lecture briefly, to show use of grammars and
recursion. Done more thoroughly and carefully here.	

Historical note: Gries wrote the first text on compiler writing, in
1971. It was the first text written/printed on computer, using a
simple formatting application. It was typed on punch cards. You
can see the cards in the Stanford museum; visit
infolab.stanford.edu/pub/voy/museum/pictures/display/floor5.htm	

Parsing Arithmetic Expressions	

26	

-5 + 6 Arithmetic expr in infix notation	

5 – 6 + Same expr in postfix notation	

	

	

infix: operation between operands	

postfix: operation after operands	

prefix: operation before operands	

PUSH 5	

NEG	

PUSH 6	

ADD	

Corresponding machine language for a “stack
machine”:	

PUSH: push value on stack	

NEG: negate the value on top of stack	

ADD: Remove top 2 stack elements, push their	

 sum onto stack	

Infix requires parentheses. Postfix doesn’t	

27	

(5 + 6) * (4 – 3) Infix	

5 6 + 4 3 - * Postfix	

5 + 6 * 3 Infix 	

5 6 3 * + Postfix	

	

	

Math convention: *
has precedence over
+. This convention
removes need for
many parentheses 	

Task: Write a parser for conventional arithmetic
expressions whose operands are ints.	

1.  Need a grammar for expressions, which defines

legal arith exps, giving precedence to * / over + -	

2.  Write recursive procedures, based on grammar, to

parse the expression given in a String. Called a
recursive descent parser	

Grammar	

28	

Use 3 syntactic categories: <Exp>, <Term>, <Factor>	

A <Factor> has one of 3 forms:	

 1. integer	

 2. – <Factor>	

 3. (<Exp>)	

Show “syntax trees” for	

3 – – 5 – (3 + 2) 	

<Factor>	

3	

<Factor>	

5	
–	

<Factor>	

–	

3 + 2	

<Factor>	

)	
(

<Factor>	

–	

<Exp>	

Haven’t

shown
<Exp>

grammar
yet	

<Factor> ::= int	

 | <Factor>	

 | (<Exp>)	

Grammar	

29	

Use 3 syntactic categories: <Exp>, <Term>, <Factor>	

A <Term> is:	

 <Factor> followed by 0 or more occurs. of multop <Factor>	

where multop is * or / 	

<Term> ::= <Factor> { {* | /}1 <Factor> }	

3 * (5 + 2) * 6	

<Factor>	

<Term>	

<Factor>	

<Exp>	

<Factor>	

Means: 0 or 1 occurrences of * or /	

Means: 0 or more
occurrences of
thing inside { }	

Grammar	

30	

Use 3 syntactic categories: <Exp>, <Term>, <Factor>	

A <Exp> is:	

 <Term> followed by 0 or more occurrences of addop <Term>	

where addop is + or - 	

3 + (5 + 2) _ 6	

<Factor>	

<Exp>	

<Term>	

<Factor>	
 <Factor>	

<Exp> ::= <Term> { {+ | -}1 <Term> }	

<Term>	
<Term>	

6	

31	

Initialized to a String that contains an arithmetic expression.	

Delivers the tokens in the String, one at a time	

Class Scanner	

Expression: 3445*(20 + 16)	

Tokens:	

3445	

*	

(

20	

+	

16	

)	

	

All parsers use a scanner,
so they do not have to
deal with the input
character by character
and do not have to deal
with whitespace	

32	

An instance provides tokens from a string, one at a time.	

 A token is either	

 1. an unsigned integer,	

 2. a Java identifier	

 3. an operator + - * / %	

 4. a paren of some sort: () [] { }	

 5. any seq of non-whitespace chars not included in 1..4. 	

Class Scanner	

public Scanner(String s) // An instance with input s	

public boolean hasToken() // true iff there is a token in input	

public String token() // first token in input (null if none)	

public String scanOverToken() // remove first token from input	

 // and return it (null if none)	

public boolean tokenIsInt() // true iff first token in input is int	

public boolean tokenIsId() // true iff first token in input is a	

 // Java identifier	
 33	

/** scanner's input should start with a <Factor>	

 —if not, throw a RuntimeException.	

 Return the postfix instructions for <Factor>	

 and have scanner remove the <Factor> from its input.	

 <Factor> ::= an integer 	

 | – <Factor> 	

 | (<Expr>) */	

 public static String parseFactor(Scanner scanner)	

The spec of every parser method for a grammatical entry is
similar. It states	

1.  What is in the scanner when parsing method is called	

2.  What the method returns.	

3.  What was removed from the scanner during parsing. 	

Parser for ���
<Factor>	

34	

/** scanner's input should start with an <Exp> 	

 --if not throw a RuntimeException.	

 Return corresponding postfix instructions	

 and have scanner remove the <Exp> from its input.	

 <Exp> := <Term> { {+ or -}1 <Term>} */	

 public static String parseExp(Scanner scanner) {	

 String code= parseTerm(scanner);	

 while ("+".equals(scanner.token()) || 	

 "-".equals(scanner.token())) {	

 String op= scanner.scanOverToken();	

 String rightOp= parseTerm(scanner);	

 code= code + rightOp + 	

 (op.equals("+") ? "PLUS\n" : "MINUS\n");	

 }	

 return code;	

 }	

Parser for ���
<Exp>	

