
1	

SUMMARY: abstract classes and interfaces	

1	

Make a class abstract so instances of it cannot be created.	

Make a method abstract so it must be overridden.	

An interface is like an abstract class whose methods are all
abstract and whose fields are all public constants. This
allows multiple inheritance without ambiguity. An interface
has a different syntax and a different way of using it.	

	

References to text and to JavaSummary.pptx	

Abstract class: C.27, slides 42-44	

Abstract method: C.27, slide 44	

Interface declaration: D.11-D.13, D.28, slide 60	

Implementing interfaces: D.14-D.15, slide 60	

Casting with interfaces: none, slide 61	

Interface Comparable: D.20, slide 62	

abstract classes and interfaces	

2	

Circle@x	

Circle	

Shape	

Object	

Rect@z	

fields for���
(x, y) coords	

Rect	

 Shape	

 Object	

Teach using the problem of
using objects to represent
shapes in the plane	

fields for���
length, width	

fields for���
(x, y) coords	

field for���
radius	

Every shape has a position
(x, y) in the plane, so use a
superclass Shape to hold the
point.	

Subclass has necessary
fields to describe a shape.	

Circle@y	

Circle	

Shape	

Object	

fields for���
(x, y) coords	

field for���
radius	

Every subclass has a different area() function	

3	

We are dealing with shapes that have areas:	

Circles, Rectangles, Triangles, Polyhedrons,
Squares, etc. 	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Rect@z	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Rect@z	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Therefore, each subclass has a
(different) function area(), which
returns its area.	

Making our points with scaled-down classes	

4	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

public class Shape { }	

	

public class Circle extends Shape {	

 public double area() {	

 return 1;	

 }	

 }	

	

public class Rect extends Shape {	

 public double area() {	

 return 1;	

 } 	

}	

Motivating abstract classes	

5	

Shape[]	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

b	

Shape@y	

…	
 Shape	

…	
 Object	

Rect@z	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

0 1 2 3 	

Rect@z	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

b[1].area() is illegal, even though each	

Subclass object has function area()	

Don’t want to cast down!
Instead, define area() in
Shape	

Cast?	

if (b[1] instanceof Rect)	

 r= ((Rect)b[1]).area();	

Motivating abstract classes	

6	
Shape[]	

area() in class Shape doesn’t return useful value	
 Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

area()	
area()	

area()	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

public double area() { return 0.0; }	

Problem: How to force
subclasses to override area?	

Problem: How to
ban creation of	

Shape objects	

area()	

2	

Abstract class and method solves both problems	

7	

public abstract class Shape {	

	

 public abstract double area();	

 …	

}	

Abstract class. Means can’t create object of Shape:	

 new Shape(…) syntactically illegal	

Abstract method. Means it must be
overridden in any subclass	

Place abstract method
only in abstract class.	

	

 Body is replaced by ;	

8	

Can extend only one class	

public class C extends C1, C2 { 	

 public void p() {	

 …; h= m(); …	

 }	

}	

public class C1 {	

 public int m() {	

 return 2;	

 }	

 …	

}	

public class C2 {	

 public int m() {	

 return 3;	

 }	

 …	

}	

if we allowed multiple
inheritance, which m used?	

About interfaces	

9	

Can extend only one class	

public class C extends C1, C2 { … }	

public abstract class C1 {
 public abstract int m();
 public int p() {…}
}

public abstract class C2 {
 public abstract int m();
 public int q(){…}
}

Use abstract classes? Seems OK, because method bodies not
given!	

But Java does not allow this, because abstract classes can have
non-abstract methods	

Instead, Java has a construct, the interface, which is like an
abstract class but has more restrictions.	

10	

Interfaces	

An interface is a fully abstract class with a slightly different
syntax.	

	

An interface can contain type signatures for methods, just like
abstract methods in abstract classes, but they have to be
public.	

	

An interface can contain fields, but they have to be public,
static, and final and they have to contain an initializer. So they
are really just constants	

11	

Interface declaration and use of an interface	

public class C implements C1, C2 {	

…	

}	
 public interface C1 {
 int m();
 int p();
 int FF= 32;
}

public interface C2 {
 int m();
 int q();
}

Methods declared in	

 interface are automatically public,	

 abstract	

Use of public, abstract is optional	

Use ; not { … }	

Field declared in	

 interface automatically	

 public, static, final	

Must have initialization	

Use of public, static, final
optional	

Eclipse: Create new interface? Create new
class, change keyword class to interface	

C must override all
methods in C1 and C2	

Casting with interfaces	

12	

class B extends A implements C1, C2 { … }	

interface C1 { … }	

interface C2 { … }	

class A { … }	

b= new B();	

What does object b look like?	

A	

Object	

B	

Draw b like this, showing���
only names of partitions:	

Add C1, C2 as new dimensions:	

C2	
C1	

Object b has 5 perspectives. Can
cast b to any one of them at any
time. Examples:	

(C2) b (Object) b	

(A)(C2) b (C1) (C2) b	

 	

You’ll see such casting later	

3	

Same rules apply to classes and interface	

13	

class B extends A implements C1, C2 { … }	

interface C1 { … }	

interface C2 { … }	

class A { … }	

B b= new B();	

C2 c= b;	

A	

Object	

B	

C2	
C1	

c	
 B@xy	

C2	

b	
 B@xy	

B	

c.m(…) syntactically legal only if m declared in C2	

c.m(…) calls overriding m declared in B	

14	
Shape[]	

Want to sort b by shape areas.���
Don’t want to write a sort procedure —many
already exist. Avoid duplication of effort!	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

area()	
area()	

area()	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

area()	

b could be sorted on many things:	

area	

distance from (0,0)	

x-coordinate	

…	

Sort array of Shapes	

15	
Shape[]	

Want to sort b by shape areas.���
Don’t want to write a sort procedure —many
already exist. Avoid duplication of effort!	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

area()	
area()	

area()	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

area()	

Sort array of Shapes	

Solution: Write a function
compareTo that tells whether
one shape has bigger area than
another.	

Tell sort procedure to use it.	

16	

Look at: interface java.lang.Comparable

/** Comparable requires method compareTo */
public interface Comparable {

 /** = a negative integer if this object < c,
 = 0 if this object = c,
 = a positive integer if this object > c.
 Throw a ClassCastException if c cannot
 be cast to the class of this object. */
 int compareTo(Object c);

}

Classes that
implement
Comparable:	

Boolean	

Byte	

Double	

Integer	

…	

String	

BigDecimal	

BigInteger	

Calendar	

Time	

Timestamp	

…	

	

	

	

In class java.util.Arrays:	

public static void sort (Comparable[] a) {…} 	

17	

1
7

Which class should implement Comparable?

Shape	

Object	

Circle	

Comparable	

First idea: all the subclasses
Circle, Rect, …	

Doesn’t work! Each element	

of b has static type Shape,
and compareTo isn’t
available in Shape partition 	
 Shape[] b= …	

…	

Shape	

Object	

Circle	

Comparable	

Use this. Shape must
implement Comparable	

Shape[]	

b	
 …	

18	

1
8

Shape should implement Comparable

Shape[] b= …	

…	

Arrays.sort(b);	

	

	

Shape	

Object	

Circle Rect … Triangle 	

Comparable	

Shape[]@20	

…	

In class java.util.Arrays:	

public static void sort (Comparable[] a) {…} 	

b	
 Shape[]@20	

a	
 ??	

Comparable[]	

Shape[]	

Shape[]@20	

Cast from Shape[] to Comparable[] happens automatically	

4	

19	

public abstract class Shape implements Comparable {	

/** If c is not a Shape, throw a CastClass exception.	

 Otherwise, return neg number, 0, or pos number���
 depending on whether this shape has smaller area than c,	

 same area, or greater area */	

 public @Override int compareTo(Object c) {	

	

 return area() – ((Shape) c).area();	

}	

 …	

Cast needed so that
area() can be used. If c
not a Shape, exception
thrown	

Class Shape implements Comparable	

We take advantage of the fact that we don’t have to
return -1, 0, or 1! Simpler code	

20	

Beauty of interfaces:

Arrays.sort sorts an array or list C[] for any class C, as
long as C implements interface Comparable —and thus
implements compareTo to say which of two elements is
bigger.

Java Library static methods:	

	

Arrays.sort(Comparable[] a)	

	

Class Arrays has many other useful static methods

