
Lecture 24 – CS2110 – Spring 2014

RACE CONDITIONS AND
SYNCHRONIZATION

Reminder

¨  A “race condition” arises if two threads try and share
some data

¨  One updates it and the other reads it, or both
update the data

¨  In such cases it is possible that we could see the data
“in the middle” of being updated
¤ A “race condition”: correctness depends on the update

racing to completion without the reader managing to
glimpse the in-progress update

¤ Synchronization (aka mutual exclusion) solves this

2

Java Synchronization (Locking)
3

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 synchronized (stack) {
 if (stack.isEmpty()) return;
 String s = stack.pop();
 }
 //do something with s...
}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

 synchronized block

Java Synchronization (Locking)
4

public void doSomething() {
 synchronized (this) {
 ...
 }
}

public synchronized void doSomething() {
 ...
}

• You can lock on any object, including this

is equivalent to

How locking works

¨  Only one thread can “hold” a lock at a time
¤  If several request the same lock, Java somehow decides

which will get it

¨  The lock is released when the thread leaves the
synchronization block
¤  synchronized(someObject) { protected code }
¤ The protected code has a mutual exclusion guarantee:

At most one thread can be in it

¨  When released, some other thread can acquire the
lock

5

Locks are associated with objects

¨  Every Object has its own built-in lock
¤ Just the same, some applications prefer to create

special classes of objects to use just for locking
¤ This is a stylistic decision and you should agree on it

with your teammates or learn the company policy if you
work at a company

¨  Code is “thread safe” if it can handle multiple
threads using it… otherwise it is “unsafe”

6

Visualizing deadlock
7

Process
A

Process
B X Y

A has a lock on X
wants a lock on Y

B has a lock on Y
wants a lock on X

Deadlocks always involve cycles

¨  They can include 2 or more threads or processes in
a waiting cycle

¨  Other properties:
¤ The locks need to be mutually exclusive (no sharing of

the objects being locked)
¤ The application won’t give up and go away (no timer

associated with the lock request)
¤ There are no mechanisms for one thread to take locked

resources away from another
thread – no “preemption”

8

“... drop that mouse or
you’ll be down to 8 lives”

Dealing with deadlocks

¨  We recommend designing code to either
¤ Acquire a lock, use it, then promptly release it, or
¤  ... acquire locks in some “fixed” order

¨  Example, suppose that we have objects a, b, c, ...
¨  Now suppose that threads sometimes lock sets of

objects but always do so in alphabetical order
¤ Can a lock-wait cycle arise?
¤  ... without cycles, no deadlocks can occur!

9

Higher level abstractions

¨  Locking is a very low-level way to deal with
synchronization
¤ Very nuts-and-bolts

¨  So many programmers work with higher level
concepts. Sort of like ADTs for synchronization
¤ We’ll just look at one example today
¤ There are many others; take cs4410 to learn more

10

A producer/consumer example

¨  Thread A produces loaves of bread and puts them
on a shelf with capacity K
¤ For example, maybe K=10

¨  Thread B consumes the loaves by taking them off
the shelf
¤ Thread A doesn’t want to overload the shelf
¤ Thread B doesn’t wait to leave with empty arms

11

producer shelves consumer

Producer/Consumer example
12

class Bakery {
 int nLoaves = 0; // Current number of waiting loaves
 final int K = 10; // Shelf capacity

public synchronized void produce() {
 while(nLoaves == K) this.wait(); // Wait until not full
 ++nLoaves;
 this.notifyall(); // Signal: shelf not empty
}

public synchronized void consume() {
 while(nLoaves == 0) this.wait(); // Wait until not empty
 --nLoaves;
 this.notifyall(); // Signal: shelf not full
}

}

Things to notice

¨  Wait needs to wait on the same object that you
used for synchronizing (in our example, “this”, which
is this instance of the Bakery)

¨  Notify wakes up just one waiting thread, notifyall
wakes all of them up

¨  We used a while loop because we can’t predict
exactly which thread will wake up “next”

13

Bounded Buffer

¨  Here we take our producer/consumer and add a
notion of passing something from the producer to
the consumer
¤ For example, producer generates strings
¤ Consumer takes those and puts them into a file

¨  Question: why would we do this?
¤ Keeps the computer more steadily busy

14

Producer/Consumer example
15

class Bakery {
 int nLoaves = 0; // Current number of waiting loaves
 final int K = 10; // Shelf capacity

public synchronized void produce() {
 while(nLoaves == K) this.wait(); // Wait until not full
 ++nLoaves;
 this.notifyall(); // Signal: shelf not empty
}

public synchronized void consume() {
 while(nLoaves == 0) this.wait(); // Wait until not empty
 --nLoaves;
 this.notifyall(); // Signal: shelf not full
}

}

Bounded Buffer example
16

class BoundedBuffer<T> {
 int putPtr = 0, getPtr = 0; // Next slot to use
 int available = 0; // Items currently available
 final int K = 10; // buffer capacity
 T[] buffer = new T[K];

public synchronized void produce(T item) {
 while(available == K) this.wait(); // Wait until not full
 buffer[putPtr++ % K] = item;
 ++available;
 this.notifyall(); // Signal: not empty
}

public synchronized T consume() {
 while(available == 0) this.wait(); // Wait until not empty
 --available;
 T item = buffer[getPtr++ % K];
 this.notifyall(); // Signal: not full
 return item;
}

}

In an ideal world…

¨  Bounded buffer allows producer and consumer to
both run concurrently, with neither blocking
¤ This happens if they run at the same average rate
¤ … and if the buffer is big enough to mask any brief

rate surges by either of the two

¨  But if one does get ahead of the other, it waits
¤ This avoids the risk of producing so many items that we

run out of computer memory for them. Or of
accidentally trying to consume a non-existent item.

17

Trickier example

¨  Suppose we want to use locking in a BST
¤ Goal: allow multiple threads to search the tree
¤ But don’t want an insertion to cause a search thread to

throw an exception

18

Code we’re given is thread unsafe
19

class BST {
 Object name; // Name of this node
 Object value; // Value of associated with that name
 BST left, right; // Children of this node

 // Constructor
 public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public Object get(Object goal) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
}

// Updates value if name is already in the tree, else adds new BST node
public void put(Object goal, object value) {
 if(name.equals(goal)) { this.value = value; return; }
 if(name.compareTo(goal) < 0) {
 if(left == null) { left = new BST(goal, value); return; }
 left.put(goal, value);
 } else {
 if(right == null) { right = new BST(goal, value); return; }
 right.put(goal, value);
 }
}

}

Attempt #1

¨  Just make both put and get synchronized:
¤ public synchronized Object get(…) { … }
¤ public synchronized void put(…) { … }

¨  Let’s have a look….

20

Safe version: Attempt #1
21

class BST {
 Object name; // Name of this node
 Object value; // Value of associated with that name
 BST left, right; // Children of this node

 // Constructor
 public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public synchronized Object get(Object goal) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
}

// Updates value if name is already in the tree, else adds new BST node
public synchronized void put(Object goal, object value) {
 if(name.equals(goal)) { this.value = value; return; }
 if(name.compareTo(goal) < 0) {
 if(left == null) { left = new BST(goal, value); return; }
 left.put(goal, value);
 } else {
 if(right == null) { right = new BST(goal, value); return; }
 right.put(goal, value);
 }
}

}

Attempt #1

¨  Just make both put and get synchronized:
¤ public synchronized Object get(…) { … }
¤ public synchronized void put(…) { … }

¨  This works but it kills ALL concurrency
¤ Only one thread can look at the tree at a time
¤ Even if all the threads were doing “get”!

22

Visualizing attempt #1
23

Cathy
cd4

Freddy
netid: ff1

Martin
mg8

Andy
am7

Zelda
za7

Darleen
dd9

Ernie
gb0

Put(Ernie, eb0)
Get(Martin)… must

wait!

Get(Martin)…
resumes

Attempt #2

¨  put uses synchronized in method declaration
¤ So it locks every node it visits

¨  get tries to be fancy:

¨  Actually this is identical to attempt 1! It only looks
different but in fact is doing exactly the same thing

24

// Returns value if found, else null
public Object get(Object goal) {
 synchronized(this) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
 }
}

Attempt #3

¨  Risk: “get” (read-only) threads sometimes look at nodes without
locks, but “put” always updates those same nodes.

¨  According to JDK rules this is unsafe

25

// Returns value if found, else null
public Object get(Object goal) {
 boolean checkLeft = false, checkRight = false;
 synchronized(this) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) {
 if (left==null) return null; else checkLeft = true;
 } else {
 if(right==null) return null; else checkRight = true;
 }
 }
 if (checkLeft) return left.get(goal);
 if (checkRight) return right.get(goal);

 /* Never executed but keeps Java happy */ return null;
}

relinquishes lock on this – next
lines are “unprotected”

Attempt #4

¨  This version is safe: only accesses the shared variables left and
right while holding locks

¨  In fact it should work (I think)

26

// Returns value if found, else null
public Object get(Object goal) {
 BST checkLeft = null, checkRight = null;
 synchronized(this) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) {
 if (left==null) return null; else checkLeft = left;
 } else {
 if(right==null) return null; else checkRight = right;
 }
 }
 if (checkLeft != null) return checkleft.get(goal);
 if (checkRight != null) return checkright.get(goal);

 /* Never executed but keeps Java happy */ return null;
}

Attempt #3 illustrates risks

¨  The hardware itself actually needs us to use locking
and attempt 3, although it looks right in Java, could
actually malfunction in various ways
¤  Issue: put updates several fields:

n parent.left (or parent.right) for its parent node
n  this.left and this.right and this.name and this.value

¤ When locking is used correctly, multicore hardware will
correctly implement the updates

¤ But if you look at values without locking, as we did in
Attempt #3, hardware can behave oddly!

27

More tricky things to know about

¨  With priorities Java can be very annoying
¤ ALWAYS runs higher priority threads before lower

priority threads if scheduler must pick
¤ The lower priority ones might never run at all

¨  Consequence: risk of a “priority inversion”
¤ High priority thread t1 is waiting for a lock, t2 has it
¤ Thread t2 is runnable, but never gets scheduled

because t3 is higher priority and “busy”

28

Summary
29

¤ Use of multiple processes and multiple threads within each
process can exploit concurrency
n  Which may be real (multicore) or “virtual” (an illusion)

¤  But when using threads, beware!
n  Must lock (synchronize) any shared memory to avoid non-

determinism and race conditions
n  Yet synchronization also creates risk of deadlocks
n  Even with proper locking concurrent programs can have other

problems such as “livelock”
¤  Serious treatment of concurrency is a complex topic (covered

in more detail in cs3410 and cs4410)
¤ Nice tutorial at http://docs.oracle.com/javase/tutorial/essential/concurrency/

index.html

