

Example Directed Graph (Digraph)

$V=\{a, b, c, d, e, f\}$
$E=\{(a, b),(a, c),(a, e),(b, c),(b, d),(b, e),(c, d)$,
(c,f), (d,e), (d,f), (e,f)\}
$|\mathrm{V}|=6,|E|=11$

Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) $\{u, v\}$

Example:

$V=\{a, b, c, d, e, f\}$
$E=\{\{a, b\},\{a, c\},\{a, e\},\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, f\}$, $\{d, e\},\{d, f\},\{e, f\}\}$

Graph Concepts and Algorithms

- Adjacency Matrix
- Topological Sort
- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
-Kruskal's algorithm

Others:

- Graph Coloring
- Planarity
- Traveling Salesman problem.

Graph Adjacency Matrix

Adjacency Matrix					
	1	2	3	4	
1	0	1	0	1	
2	0	0	1	0	
3	0	0	0	0	
4	0	1	1	0	

Graph Adjacency Matrix

Adjacency Matrix
$\left.\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0\end{array}\right] \begin{array}{l}1 \\ 2 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

How would you find friends of friends?

Graph Concepts and Algorithms
$\sqrt{ } \cdot$ Adjacency Matrix

- Topological Sort
- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
-Kruskal's algorithm

Graph Concepts and Algorithms	
- Adjacency Matrix - Topological Sort - Search -depth-first search - breadth-first search - Shortest paths - Dijkstra's algorithm - Minimum spanning trees -Prim's algorithm -Kruskal's algorithm	Others: - Graph Coloring - Planarity - Traveling Salesman problem.

Graph Concepts and Algorithms	
- Adjacency Matrix - Topological Sort - Search - depth-first search - breadth-first search - Shortest paths - Dijkstra's algorithm - Minimum spanning trees -Prim's algorithm -Kruskal's algorithm	Others: - Graph Coloring - Planarity - Traveling Salesman problem.

Topological Sort

\square Topological sort of the dag
This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

\square Useful in job scheduling with precedence constraints

Topological Sort

\square Topological sort of the dag
This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

\square Useful in job scheduling with precedence constraints

Al: Vision and Robotics
\square Number of cell-phones in 2014: 7 billion!
\square So many images everywhere.
\square But do computers understand the images?

Modeling the Activities with an Undirected Graph

Graph Concepts and Algorithms

Anticipating Future Actions

Robot's view

Humans use anticipation all the time

- e.g., interacting with other people, playing sports, driving, etc.

Undirected Graph

$P(\mathcal{O}, \mathcal{A} \mid \mathcal{H}, \mathcal{L})$
Undirected Graphs: Probabilities on the Graphs

Others:
$\sqrt{ }$ - Adjacency Matrix

- Topological Sort
- Search
-depth-first search
- breadth-first search
- Shortest paths
-Dijkstra's algorithm
- Minimum spanning trees
-Prim's algorithm
-Kruskal's algorithm
- Graph Coloring
- Planarity
- Traveling Salesman problem.

COGNICAL

\square Cognical collects data about customers from various sources.
\square Represents over a graph, and predicts how to finance.

Graphs!

- Adjacency Matrix
- Topological Sort
- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
-Kruskal's algorithm

Others:

- Graph Coloring
- Planarity
- Traveling Salesman problem.

