
SPANNING TREES
Lecture 21
CS2110 – Spring 2014

1

A lecture with two distinct parts

¨  Part I: Finishing our discussion of graphs
¤ Short review of DFS and BFS.
¤ Spanning trees
¤ Definitions, algorithms (Prim’s, Kruskal’s)
¤ Travelling salesman problem

2

Undirected Trees

• An undirected graph is a tree if there is
exactly one simple path between any pair
of vertices

3

Facts About Trees

• |E| = |V| – 1
• connected
• no cycles
In fact, any two of
these properties
imply the third, and
imply that the graph
is a tree

4

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

5

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

• Same set of
vertices V

• E' ⊆ E

•  (V,E') is a tree

6

Finding a Spanning Tree

A subtractive method

•  If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

•  Repeat until no more
cycles

•  Start with the whole graph – it is connected

7

•  If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

•  Repeat until no more
cycles

•  Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method

8

•  If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

•  Repeat until no more
cycles

•  Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method

9

An additive method

•  If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

•  Repeat until only one
component

•  Start with no edges – there are no cycles

Finding a Spanning Tree
10

•  If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

•  Repeat until only one
component

•  Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
11

•  If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

•  Repeat until only one
component

•  Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
12

•  If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

•  Repeat until only one
component

•  Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
13

•  If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

•  Repeat until only one
component

•  Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
14

•  If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

•  Repeat until only one
component

•  Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
15

Minimum Spanning Trees

• Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

• Some graphs have exactly one minimum
spanning tree. Others have multiple trees with
the same cost, any of which is a minimum
spanning tree

16

Minimum Spanning Trees

• Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

• Useful in network
routing & other
applications

• For example, to
stream a video

10

14

16

17

3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

14

16

18

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

19

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

20

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

21

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

22

3 Greedy Algorithms

4

13

9

6

7

21

15

1

2

5

22 24

8
25

54

11

12

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

23

3 Greedy Algorithms

4

13

9

6

7

15

1

2

5
8

25

54

11

12

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

24

3 Greedy Algorithms

14

4

9

6

7

1

2

5
8

25

54

11

12

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

16

25

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

26

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

27

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

28

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

29

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

16

30

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

16

31

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

32

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

33

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

34

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

35

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

36

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

37

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

38

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

39

3 Greedy Algorithms

14

4

9

6

7

1

2

5
8

25

54

11

12

10

•  When edge weights are all distinct, or if there is
exactly one minimum spanning tree, the 3
algorithms all find the identical tree

16

40

Prim’s Algorithm

¨ O(m + n log n) for adj list
¤ Use a PQ

¤ Regular PQ produces time O(n + m log m)

¤ Can improve to O(m + n log n) using a
fancier heap

prim(s) {
 D[s] = 0; mark s; //start vertex
 while (some vertices are unmarked) {
 v = unmarked vertex with smallest D;
 mark v;
 for (each w adj to v) {
 D[w] = min(D[w], c(v,w));
 }
 }
}

•  O(n2) for adj matrix
– While-loop is executed n times
– For-loop takes O(n) time

41

Greedy Algorithms

¨ These are examples of Greedy
Algorithms

¨ The Greedy Strategy is an algorithm
design technique
¤ Like Divide & Conquer

¨ Greedy algorithms are used to solve
optimization problems
¤ The goal is to find the best solution

¨ Works when the problem has the
greedy-choice property
¤ A global optimum can be reached by

making locally optimum choices

•  Example: the Change Making
Problem: Given an amount of
money, find the smallest number of
coins to make that amount

•  Solution: Use a Greedy Algorithm
– Give as many large coins as you can
•  This greedy strategy produces the

optimum number of coins for the
US coin system

•  Different money system ⇒greedy
strategy may fail

– Example: old UK system

42

Similar Code Structures

while (some vertices are
 unmarked) {
 v = best of unmarked
 vertices;
 mark v;

 for (each w adj to v)
 update w;

}

• Breadth-first-search (bfs)
– best: next in queue
– update: D[w] = D[v]+1
• Dijkstra’s algorithm
– best: next in priority queue
– update: D[w] = min(D[w], D[v]+c(v,w))

• Prim’s algorithm
– best: next in priority queue
– update: D[w] = min(D[w], c(v,w))

here c(v,w) is the v→w edge weight

43

Traveling Salesman Problem

¨  Given a list of cities and the distances between each
pair, what is the shortest route that visits each city
exactly once and returns to the origin city?
¤  Basically what we want the butterfly to do in A6! But we

don’t mind if the butterfly revisits a city (Tile), or doesn’t
use the very shortest possible path.

¤  The true TSP is very hard (NP complete)… for this we want
the perfect answer in all cases, and can’t revisit.

¤ Most TSP algorithms start with a spanning tree, then
“evolve” it into a TSP solution. Wikipedia has a lot of
information about packages you can download…

44

