
SPANNING TREES 
Lecture 21 
CS2110 – Spring 2014 
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A lecture with two distinct parts 

¨  Part I: Finishing our discussion of graphs 
¤ Short review of DFS and BFS. 
¤ Spanning trees 
¤ Definitions, algorithms (Prim’s, Kruskal’s) 
¤ Travelling salesman problem 
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Undirected Trees 

• An undirected graph is a tree if there is 
exactly one simple path between any pair 
of vertices 
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Facts About Trees 

• |E| = |V| – 1 
• connected 
• no cycles 
In fact, any two of 
these properties 
imply the third, and 
imply that the graph 
is a tree 
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Spanning Trees 

A spanning tree of a connected undirected 
graph (V,E) is a subgraph (V,E') that is a tree 
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Spanning Trees 

A spanning tree of a connected undirected 
graph (V,E) is a subgraph (V,E') that is a tree 

• Same set of 
vertices V 

• E' ⊆ E 

•  (V,E') is a tree 
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Finding a Spanning Tree 

A subtractive method 

•  If there is a cycle, pick 
an edge on the cycle, 
throw it out – the 
graph is still  
connected (why?) 

•  Repeat until no more 
cycles 

•  Start with the whole graph – it is connected 
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An additive method 

•  If more than one 
connected component, 
insert an edge between 
them –  still no cycles 
(why?) 

•  Repeat until only one 
component 

•  Start with no edges – there are no cycles 
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Minimum Spanning Trees 

• Suppose edges are weighted, and we want a 
spanning tree of minimum cost (sum of edge 
weights) 

• Some graphs have exactly one minimum 
spanning tree.  Others have multiple trees with 
the same cost, any of which is a minimum 
spanning tree 
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Minimum Spanning Trees 

• Suppose edges are weighted, and we want a 
spanning tree of minimum cost (sum of edge 
weights) 
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• Useful in network 
routing & other 
applications 

• For example, to 
stream a video 
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3 Greedy Algorithms 

A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 
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otherwise keep it 
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle 

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm) 
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•  When edge weights are all distinct, or if there is 
exactly one minimum spanning tree, the 3 
algorithms all find the identical tree 
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Prim’s Algorithm 

¨ O(m + n log n) for adj list 
¤ Use a PQ 

¤ Regular PQ produces time O(n + m log m) 

¤ Can improve to O(m + n log n) using a 
fancier heap 

prim(s) { 
   D[s] = 0; mark s; //start vertex 
   while (some vertices are unmarked) { 
      v = unmarked vertex with smallest D; 
      mark v; 
      for (each w adj to v) { 
         D[w] = min(D[w], c(v,w)); 
      } 
   } 
} 

•  O(n2) for adj matrix 
– While-loop is executed n times 
– For-loop takes O(n) time 
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Greedy Algorithms 

¨ These are examples of Greedy 
Algorithms 

¨ The Greedy Strategy is an algorithm 
design technique 
¤ Like Divide & Conquer 

¨ Greedy algorithms are used to solve 
optimization problems 
¤ The goal is to find the best solution 

¨ Works when the problem has the 
greedy-choice property 
¤ A global optimum can be reached by 

making locally optimum choices 

•  Example: the Change Making 
Problem: Given an amount of 
money, find the smallest number of 
coins to make that amount 

•  Solution: Use a Greedy Algorithm 
– Give as many large coins as you can 
•  This greedy strategy produces the 

optimum number of coins for the 
US coin system 

•  Different money system ⇒greedy 
strategy may fail 

– Example: old UK system 
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Similar Code Structures 

while (some vertices are 
     unmarked) { 
 v = best of unmarked 
    vertices; 
 mark v; 

 for (each w adj to v) 
  update w; 

} 

• Breadth-first-search (bfs) 
– best: next in queue 
– update: D[w] = D[v]+1 
• Dijkstra’s algorithm 
– best: next in priority queue 
– update: D[w] = min(D[w], D[v]+c(v,w)) 

• Prim’s algorithm 
– best: next in priority queue 
– update: D[w] = min(D[w], c(v,w)) 
 
here c(v,w) is the v→w edge weight 
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Traveling Salesman Problem 

¨  Given a list of cities and the distances between each 
pair, what is the shortest route that visits each city 
exactly once and returns to the origin city? 
¤  Basically what we want the butterfly to do in A6!  But we 

don’t mind if the butterfly revisits a city (Tile), or doesn’t 
use the very shortest possible path. 

¤  The true TSP is very hard (NP complete)… for this we want 
the perfect answer in all cases, and can’t revisit.  

¤ Most TSP algorithms start with a spanning tree, then 
“evolve” it into a TSP solution.  Wikipedia has a lot of 
information about packages you can download… 
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