

Note: Long-haul freight trucks typically serve locations at least 50 miles apart, excluding trucks that are used in movements by multiple modes and mail.

SPANNING TREES

Lecture 21
CS2110 - Spring 2014

A lecture with two distinct parts

\square Part I: Finishing our discussion of graphs
\square Short review of DFS and BFS.
\square Spanning trees
\square Definitions, algorithms (Prim's, Kruskal' s)
\square Travelling salesman problem

Undirected Trees

- An undirected graph is a tree if there is exactly one simple path between any pair of vertices

Facts About Trees

- $|\mathrm{E}|=|\mathrm{V}|-1$
- connected
- no cycles

In fact, any two of these properties imply the third, and
 imply that the graph
is a tree

Spanning Trees

A spanning tree of a connected undirected graph (V, E) is a subgraph $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ that is a tree

Spanning Trees

A spanning tree of a connected undirected graph (V, E) is a subgraph $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ that is a tree

- Same set of vertices V
- $\mathrm{E}^{\prime} \subseteq \mathrm{E}$
- $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ is a tree

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between them - still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between them - still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between them - still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one component

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
- Some graphs have exactly one minimum spanning tree. Others have multiple trees with the same cost, any of which is a minimum spanning tree

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
- Useful in network routing \& other applications
- For example, to
 stream a video

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

- When edge weights are all distinct, or if there is exactly one minimum spanning tree, the 3 algorithms all find the identical tree

Prim's Algorithm

```
prim(s) {
    D[s] = 0; mark s; //start vertex
    while (some vertices are unmarked) {
        v = unmarked vertex with smallest D;
        mark v;
        for (each w adj to v) {
                D[w] = min(D[w], c(v,w));
        }
    }
}
```

- O(n^{2}) for adj matrix
- While-loop is executed n times
- For-loop takes O(n) time
$\square \mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$ for adj list
- Use a PQ
- Regular PQ produces time $\mathrm{O}(\mathrm{n}+\mathrm{m} \log \mathrm{m})$
- Can improve to $O(m+n \log n)$ using a fancier heap

Greedy Algorithms

\square These are examples of Greedy Algorithms
\square The Greedy Strategy is an algorithm design technique

- Like Divide \& Conquer
\square Greedy algorithms are used to solve optimization problems
- The goal is to find the best solution
\square Works when the problem has the greedy-choice property
- A global optimum can be reached by making locally optimum choices
- Example: the Change Making Problem: Given an amount of money, find the smallest number of coins to make that amount
- Solution: Use a Greedy Algorithm
- Give as many large coins as you can
- This greedy strategy produces the optimum number of coins for the US coin system
- Different money system \Rightarrow greedy strategy may fail
- Example: old UK system

Similar Code Structures

- Breadth-first-search (bfs)
-best: next in queue
-update: $\mathrm{D}[\mathrm{w}]=\mathrm{D}[\mathrm{v}]+1$
- Dijkstra's algorithm
-best: next in priority queue
- update: $\mathrm{D}[\mathrm{w}]=\min (\mathrm{D}[\mathrm{w}], \mathrm{D}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))$
- Prim's algorithm
-best: next in priority queue
- update: $D[w]=\min (D[w], c(v, w))$
here $c(v, w)$ is the $v \rightarrow w$ edge weight

Traveling Salesman Problem

\square Given a list of cities and the distances between each pair, what is the shortest route that visits each city exactly once and returns to the origin city?
\square Basically what we want the butterfly to do in A6! But we don' t mind if the butterfly revisits a city (Tile), or doesn' \dagger use the very shortest possible path.
\square The true TSP is very hard (NP complete)... for this we want the perfect answer in all cases, and can' \dagger revisit.
\square Most TSP algorithms start with a spanning tree, then "evolve" it into a TSP solution. Wikipedia has a lot of information about packages you can download...

