A well-known scientist (Bertrand Russell?) once
gave a public lecture on astronomy. He described
how the earth orbits the sun and how the
sun, in turn, orbits the center of a vast collection
of stars called our galaxy.
Afterward, a little old lady at the back of the room got up and
said: "You told us rubbish. The world is really a flat plate
supported on the back of a giant turtle." The scientist gave a
superior smile before replying, "What is the turtle standing on?" "And that turtle?" You're very
"Another turtle," was the reply. "A
clever, young man, very clever", said the old lady. "But it's
turtles all the way down!"
LND UCTUre 21
CS2110 - Spring 2014

Overview: Reasoning about Programs

Our broad problem: code is unlikely to be correct if we don't have good reasons for believing it works
$\square$ We need clear problem statements
$\square$ We need a rigorous way to convince ourselves that what we wrote solves the problem

But reasoning about programs can be hard
$\square$ Especially with recursion, concurrency
$\square$ Today: focus on induction and recursion

We won't cover all slides!

This 50-minute lecture cannot cover all the material.
But you are responsible for it. Please study it all.

1. Defining functions recursively and in closed form
2. Weak induction over the integers
3. Proving recursive methods correct using induction
4. Strong induction

## Overview: Reasoning about Programs

## Iteration (loops)

ㄴ Loop invariants are the main tool in proving correctness of loops

## Recursion

- A programming strategy that solves a problem by reducing it to simpler or smaller instance(s) of the same problem


## Induction

- A mathematical strategy for proving statements about natural numbers $0,1,2, \ldots$ (or more generally, about inductively defined objects)

Recursion and induction are closely related
Induction can be used to establish the correctness and complexity of programs

## Defining Functions

It is often useful to describe a function in different ways
$\square$ Let $S$ : int $\rightarrow$ int be the function where $S(n)$ is the sum of the integers from 0 to $n$. For example,

$$
S(0)=0 \quad S(3)=0+1+2+3=6
$$

- Definition, iterative form:
$S(n)=0+1+\ldots+n$
$=\operatorname{sum}_{i=0}{ }^{n} \mathbf{i}$
$\square$ Another characterization: closed form $\mathrm{S}(\mathrm{n})=\mathrm{n}(\mathrm{n}+1) / 2$


## Sum of Squares: more complex example

Let SQ : int $\rightarrow$ int be the function that gives the sum of the squares of integers from 0 to n :

$$
\begin{aligned}
& S Q(0)=0 \\
& S Q(3)=0^{2}+1^{2}+2^{2}+3^{2}=14
\end{aligned}
$$

Definition (iterative form):

$$
S Q(n)=0^{2}+1^{2}+\ldots+n^{2}
$$

Is there an equivalent closed-form expression?

## Closed-Form Expression for $\mathrm{SQ}(\mathrm{n})$

Sum of integers in $0 . . n$ was $n(n+1) / 2$ which is a quadratic in $n$ i.e. $O\left(n^{2}\right)$

Inspired guess: perhaps sum of squares of
integers between 0 through $n$ is a cubic in $n$

Conjecture: $S Q(n)=a n^{3}+b n^{2}+c n+d$
where $a, b, c, d$ are unknown coefficients

How can we find the four unknowns?
Idea: Use any 4 values of n to generate 4 linear equations, and then solve

Finding Coefficients
$\mathrm{SQ}(\mathrm{n})=0^{2}+1^{2}+\ldots+\mathrm{n}^{2}=\mathrm{an}^{3}+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$

Use $n=0,1,2,3$
$\square S Q(0)=0 \quad=a \cdot 0+b \cdot 0+c \cdot 0+d$
$\square S Q(1)=1=a \cdot 1+b \cdot 1+c \cdot 1+d$
$\square S Q(2)=5=a \cdot 8+b \cdot 4+c \cdot 2+d$
$\square S Q(3)=14=a \cdot 27+b \cdot 9+c \cdot 3+d$

Solve these 4 equations to get

$$
a=1 / 3 \quad b=1 / 2 \quad c=1 / 6 \quad d=0
$$

## One Approach

Try a few other values of n to see if they work.
$\square \operatorname{Try} \mathrm{n}=5: \quad \mathrm{SQ}(\mathrm{n})=0+1+4+9+16+25=55$
$\square$ Closed-form expression: 5•6•11/6=55

- Works!

Try some more values...

We can never prove validity of the closed-form solution for all values of $n$ this way, since there are an infinite number of values of $n$

Question: Is this closed-form solution true for all n ?
$\square$ Remember, we used only $\mathrm{n}=0,1,2,3$ to determine these coefficients
$\square$ We do not know that the closed-form expression is valid for other values of $n$

## Are These Two Functions Equal?

$S Q_{r}(r=$ recursive $)$

$$
\begin{aligned}
& S Q_{r}(0)=0 \\
& S Q_{r}(n)=S Q_{r}(n-1)+n^{2}, n>0
\end{aligned}
$$

$S Q_{c}(c=$ closed - form $)$

$$
S Q_{c}(n)=n(n+1)(2 n+1) / 6
$$

## Induction over Integers

To prove that some property $\mathrm{P}(\mathrm{n})$ holds for all integers n $\geq 0$,

1. Base case: Prove that $P(0)$ is true
2. Induction Step: Assume inductive hypothesis $P(k)$ for an unspecified integer $\mathrm{k}>=0$, prove $\mathrm{P}(\mathrm{k}+1)$.

- Conclusion: Because we could have picked any k, we conclude that $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$

Alternative Induction Step: Assume inductive hypothesis $P(k-1)$ for an integer $k>0$, prove $P(k)$

$S Q_{r}(n)=S Q_{c}(n)$ for all $n$ ?

Define $P(n)$ as $S Q_{r}(n)=S Q_{c}(n)$


Prove $P(0)$
Assume $P(k)$ for unspecified $k \geq 0$ and prove $P(k+1)$ under this assumption

| Proof (by Induction) | $\begin{aligned} & S Q_{r}(0)=0 \\ & S Q_{r}(n)=S Q_{r}(n-1)+n^{2}, \quad n>0 \end{aligned}$ |
| :---: | :---: |
| 17 | $S Q_{c}(n)=n(n+1)(2 n+1) / 6$ |
|  | Here is $P(n): \mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{c}}(\mathrm{n})$ |
| 1. State carefully what you are trying to prove: $P(n)$ for $n \geq 0$ <br> 2. Prove the base case $P(0)$. <br> 3. Assume the inductive hypothesis $\mathrm{P}(\mathrm{k})$ for arbitrary $\mathrm{k} \geq 0$ and prove $\mathrm{P}(\mathrm{k}+1)$. |  |
| The proof of $\mathrm{P}(\mathrm{k}+1)$ can usually be easily developed. We see this on next slide | Other variations. <br> E.g. Can use more base cases. E.g. Can prove $P(n)$ for $n \geq 5$ |


| Proof of $P(k+1)$ |  |
| :---: | :---: |
| Induction Hypothesis: $\mathrm{P}(\mathrm{k}), \mathrm{k} \geq 0: \mathrm{SQ}_{\mathrm{r}}(\mathrm{k})=\mathrm{SQ}_{\mathrm{c}}(\mathrm{k})$ |  |
|  |  |
| $\mathrm{SQ}_{\mathrm{r}}(\mathrm{k}+1)$ |  |
| $\begin{aligned} & \quad<\text { definition of } \mathrm{SQ}_{\mathrm{r}}(\mathrm{k}+1)> \\ & =\mathrm{SQ}_{\mathrm{r}}(\mathrm{k})+(\mathrm{k}+1)^{2} \end{aligned}$ | $\begin{aligned} & S Q_{r}(0)=0 \\ & S Q_{r}(n)=S Q_{r}(n-1)+n^{2}, \quad n>0 \end{aligned}$ |
| $=\mathrm{SQ}_{\mathrm{c}}(\mathrm{k})+(\mathrm{k}+1)^{2}$ |  |
| $\begin{gathered} <\text { definition of } \mathrm{SQ}_{\mathrm{c}}(\mathrm{k})> \\ =\mathrm{k}(\mathrm{k}+1)(2 \mathrm{k}+1) / 6+(\mathrm{k}+1)^{2} \end{gathered}$ |  |
| <algebra ---we leave this to you> |  |
| $\begin{aligned} & =(\mathrm{k}+1)(\mathrm{k}+2)(2 \mathrm{k}+3) / 6 \\ & \quad<\text { definition of } \mathrm{SQ}_{\mathrm{c}}(\mathrm{k}+1)> \\ & =\mathrm{SQ}_{\mathrm{c}}(\mathrm{k}+1) \end{aligned}$ | Don't just flounder around. Opportunity directed. <br> Expose induction hypothesis |


| Proof of $P(k+1)$ | for cbtrees |
| :--- | :--- |

Induction hypothesis $\mathrm{P}(\mathrm{k})$, for $\mathrm{k} \geq 0$.
$P(k)$ : A depth-k cbtree has $2^{k}$ leaves and $2^{k+1}-1$ nodes.
Proof of $P(k+1)$. A cbtree of depth $k+1$ arises by adding
2 children to each of the leaves of a depth-k cbtree. Thus, the depth $k+1$ tree has $2^{k+1}$ leaves.
$2^{k+1}-1+2^{k+1} \quad 2^{k}$ leaves
$=2^{\mathrm{k}+2-1}$
$2^{\mathrm{k}+1}$ nodes added

| Weak Induction: Nonzero Base Case |
| :--- |
| Claim: You can make any amount of postage above $8 \phi$ with some |
| combination of $3 \phi$ and $5 \phi$ stamps. |
| Theorem: For $n \geq 8, P(n)$ holds: |
| $P(n)$ : There exist non-negative ints $b, c$ such that $n=3 b+5 c$ |
| Base case: True for $n=8: 8=3+5$. Choose $b=1$ and $c=1$. |
| i.e. one $3 \phi$ stamp and one $5 \phi$ stamp |

## Weak Induction: Nonzero Base Case

Theorem: For $\mathrm{n} \geq 8, \mathrm{P}(\mathrm{n})$ holds:
$P(n)$ : There exist non-negative ints $b, c$ such that $n=3 b+5 c$
Induction Hypothesis: $\mathrm{P}(\mathrm{k})$ holds for arbitrary $\mathrm{k} \geq 8: \mathrm{k}=3 \mathrm{~b}+5 \mathrm{c}$ Inductive Step: Two cases: $\mathrm{c}>0$ and $\mathrm{c}=0$

- Case c>0

There is $5 \phi$ stamp. Replace it by two $3 \phi$ stamps. Get $k+1$. Formally $\mathrm{k}+1=3 \mathrm{~b}+5 \mathrm{c}+1=3(\mathrm{~b}+2)+5(\mathrm{c}-1)$
$\square$ Case $\mathrm{c}=0$, i.e. $\mathrm{k}=3 \mathrm{~b}$. Since $\mathrm{k}>=8, \mathrm{k}>=9$ also, i.e. there are at least $33 \phi$ stamps. Replace them by two $5 \phi$ stamps. Get $\mathrm{k}+1$.
Formally, $k+1=3 b+1=3(b-3)+5(2)$

| What are the "Dominos"? |
| :--- |
| $\square$ In some problems, it can be tricky to determine how |
| to set up the induction |
| $\square$ This is particularly true for geometric problems that |
| can be attacked using induction |

## Proof Outline

Consider kitchens of size $2^{n} \times 2^{n}$ for $n=0,1,2, \ldots$ $P(n): A 2^{n} \times 2^{n}$ kitchen with one square covered can be tiled. $\square$ Base case: Show that tiling is possible for $1 \times 1$ board $\square$ Induction Hypothesis: for some $k \geq 0, P(k)$ holds
$\square$ Prove $P(k+1)$ assuming $P(k)$

The $8 \times 8$ kitchen is a special case of this argument
We will have proven the $8 \times 8$
special case by solving a more general problem!


## Recursive case

$P(k): A 2^{k} \times 2^{k}$ kitchen with one square covered can be tiled. ${ }^{30}$

By $P(k)$, the upper right kitchen can be tiled What about the other 3 ?


## Recursive case

$P(k): A 2^{k} \times 2^{k}$ kitchen with one square covered can be tiled.
Put in one tile so that each $2^{k} \times 2^{k}$ kitchen has
one square covered. Now, by $\mathrm{P}(\mathrm{k})$, all four $2^{k} \times 2^{k}$
kitchens can be tiles


## When Induction Fails

Sometimes an inductive proof strategy for some proposition may fail

This does not necessarily mean that the proposition is wrong

- It may just mean that the particular inductive strategy you are using is the wrong choice
$\square$ A different induction hypothesis (or a different proof strategy altogether) may succeed

Tiling Example (Poor Strategy)

Try a different induction strategy
$\square$ Proposition

- Any $\mathrm{n} \times \mathrm{n}$ board with one square covered can be tiled
$\square$ Problem
- A $3 \times 3$ board with one square covered has 8 remaining squares, but the tiles have 3 squares; tiling is impossible
$\square$ Thus, any attempt to give an inductive proof of this proposition must fail
$\square$ Note that this failed proof does not tell us anything about the $8 \times 8$ case


## A Seemingly Similar Tiling Problem



Proving a recursive function correct

```
/** = the number of 'e's in s */
public static int nE(String s) {
    if (s.length == 0) return 0;// base case
    // {s has at least 1 char}
    return (s[0] == 'e'? 1:0) + nE(s[1..])
    }
```

Theorem. For all $\mathrm{n}, \mathrm{n}>=0, \mathrm{P}(\mathrm{n})$ holds:
$\mathrm{P}(\mathrm{n})$ : For s a string of length $\mathrm{n}, \mathrm{nE}(\mathrm{s})=$ number of 'e's in s

## Proof by induction on $\mathbf{n}$

Base case. If $\mathrm{n}=0$, the call $\mathrm{nE}(\mathrm{s})$ returns 0 , which is the number of 'e's in s, the empty string. So $\mathrm{P}(0)$ holds.
$P(k)$ : For $s$ a string of length $k, n E(s)=$ number of ' $e$ 's in $s$

```
/** = the number of 'e's in s */
public static int nE(String s) {
    if (s.length == 0) return 0;// base case
        // {s has at least 1 char}
        return (s[0] == 'e'? 1:0) + nE(s[1..])
}
```

Inductive case: Assume $\mathrm{P}(\mathrm{k}), \mathrm{k} \geq 0$, and prove $\mathrm{P}(\mathrm{k}+1)$.

Suppose s has length $\mathrm{k}+1$. Then $\mathrm{s}[1 .$.$] has length \mathrm{k}$. By the inductive hypothesis $\mathrm{P}(\mathrm{k})$,

$$
\mathrm{nE}(\mathrm{~s}[1 . .])=\text { number of 'e's in } \mathrm{s}[1 . .] .
$$

Thus, the statement returns the number of ' $e$ 's in $s$.

$\mathrm{P}(\mathrm{k})$ : The call tile( $\mathrm{k}, \mathrm{p}$ ) tiles the kitchen given by k and p
Inductive case. Assume $\mathrm{P}(\mathrm{k}-1)$ for $\mathrm{k}>0$, Prove $\mathrm{P}(\mathrm{k})$

```
public static void tile(int k, Positions p) {
```

    if \((\mathrm{k}==0)\) return;
    View the kitchen as 4 kitchens of size $2^{k-1} \times 2^{k-1}$;
Place one tile so that all 4 kitchens have one tile covered.
tile( $\mathrm{k}-1, \mathrm{p}$ for upper left kitchen);
tile( $\mathrm{k}-1, \mathrm{p}$ for upper right kitchen);
tile( $\mathrm{k}-1, \mathrm{p}$ for lower left kitchen);
tile( $\mathrm{k}-1, \mathrm{p}$ for lower right kitchen);
\}
There are four recursive calls. Each, by the inductive hypothesis $\mathrm{P}(\mathrm{k}-1)$, tiles a kitchen ... etc.


## Procedure to tile a kitchen

## Theorem. For all $\mathrm{n} \geq 0, \mathrm{P}(\mathrm{n})$ holds:

$\mathrm{P}(\mathrm{n})$ : The call tile $(\mathrm{n}, \mathrm{p})$ tiles the kitchen given by n and p
Proof by induction on $n$.
Base case, $n=0$. It's a $1 \times 1$ covered square. No tiles need to be laid, and the procedure doesn't lay any.
/** Tile a kitchen of size $2^{\mathrm{k}} \mathrm{x} 2^{\mathrm{k}}$.
Precondition: $\mathrm{k}>=0$ and one square is covered */
public static void tile(int $k$, Positions $p$ ) \{
if $(k==0)$ return;
...
\}

## Strong Induction

We want to prove that some property P holds for all n
$\square$ Weak induction

- $P(0)$ : Show that property $P$ is true for 0
$\square P(k) \Rightarrow P(k+1)$ : Show that if property $P$ is true for $k>=0$, it is true for $k+1$
- Conclude that $P(n)$ holds for all $n$
$\square$ Strong induction
- $P(0)$ : Show that property $P$ is true for 0
- $P(0)$ and $P(1) \& \& \ldots \& \&(k) \Rightarrow P(k+1)$ : show that if $P$ is true for numbers at most $k$, it is true for $k+1$
- Conclude that $P(n)$ holds for all $n$

The two proof techniques are equally powerful

