
DFS AND SHORTEST PATHS
Lecture 18
CS2110 – Spring 2014

1

Readings?

¨  Read chapter 28

2

A3 “forgot a corner case”

while (true)
 try {
 if (in first column)
 if in last row, return StoredMap;
 fly south; refresh and save state, fly east
 if (in last column)

 if in last row, return StoredMap;
 fly south; refresh and save state, fly west
 if (row number is even)

 fly east; refresh and save state;
 if (row number is odd)

 fly west; refresh and save state;
 }
 catch (cliff exception e){

 if in last row, return StoredMap;
 fly south; refresh and save state

 }

3

It’s not about
“missing a corner
case”.
The design is
seriously flawed in
that several
horizontal fly(…)
calls could cause the
Bfly to fly past an
edge, and there is no
easy fix for this.

A3 “forgot a corner case”

Direction dir= Direction.E;
while (true) {
 refresh and save the state;
 // Fly the Bfly ONE tile –return array if not possible

}

4

if in first col going west or last col going east
 if in last row, return the array;
 fly south and change direction;
 else try {
 fly in direction dir;
 } catch (cliff collision e) {
 if in last row, return the array;
 fly south and change direction;
 }

If you FIRST write the
algorithm at a high level,
ignoring Java details, you
have a better chance of
getting a good design

Depth-First Search (DFS)

5

Visit all nodes of a graph reachable from r.

4

1

0 5

2 3 6 r
Depth-first because:
Keep going down a path until
no longer possible

4

1

0 5

2 3 6 r

4

1

0 5

2 3 6 r

Depth-First Search
6

• Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from

• When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

• Eventually visit all vertices reachable from r
•  If there are still unvisited vertices, repeat
• O(m) time

Difficult to understand!
Let’s write a recursive procedure

Depth-First Search
7

boolean[] visited;

node u is visited means: visited[u] is true
To visit u means to: set visited[u] to true

Node v is REACHABLE from node u if
there is a path (u, …, v) in which all
nodes of the path are unvisited.

4

1

0 5

2 3

6

Suppose all nodes
are unvisited.

The nodes that are
REACHABLE
from node 1 are
1, 0, 2, 3, 5

The nodes that are
REACHABLE
from 4 are 4, 5, 6.

Depth-First Search
8

boolean[] visited;

To “visit” a node u: set visited[u] to true.

Node u is REACHABLE from node v if
there is a path (u, …, v) in which all
nodes of the path are unvisited.

4

1

0 5

2 3

6

Suppose 2 is
already visited,
others unvisited.

The nodes that are
REACHABLE
from node 1 are 1,
0, 5

The nodes that are
REACHABLE
from 4 are 4, 5, 6.

Depth-First Search
9

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
The nodes that are
REACHABLE
from node 1 are
1, 0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

Depth-First Search
10

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
The nodes to be
visited are
0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

for each edge (u, v)
 if v is unvisited then dfs(v);

Have to do dfs on
all unvisited
neighbors of u

Depth-First Search
11

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
The nodes to be
visited are
0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

for each edge (u, v)
 if v is unvisited then dfs(v);

Suppose the for
each loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order:
1, 0, 2, 3, 5

Depth-First Search
12

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

visited[u]= true;
for each edge (u, v)
 if v is unvisited then dfs(v);

Example: There may be a different way (other than array
visited) to know whether a node has been visited

That’s all there is
to the basic dfs.

You may have to
change it to fit a

particular situation.

Example: Instead of using recursion, use a loop and
maintain the stack yourself.

Shortest Paths in Graphs

Problem of finding shortest (min-cost) path in a graph occurs often
¤  Find shortest route between Ithaca and West Lafayette, IN
¤  Result depends on notion of cost

n Least mileage… or least time… or cheapest
n Perhaps, expends the least power in the butterfly while

flying fastest
n Many “costs” can be represented as edge weights

13

14	

Dijkstra’s shortest-path algorithm
14

Edsger Dijkstra, in an interview in 2010 (CACM):
 … the algorithm for the shortest path, which I designed in about
20 minutes. One morning I was shopping in Amsterdam with my
young fiance, and tired, we sat down on the cafe terrace to drink a
cup of coffee, and I was just thinking about whether I could do
this, and I then designed the algorithm for the shortest path. As I
said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische
Mathematik 1, 269–271 (1959).
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his
contributions. As a historical record, this is a gold mine.

15	

Dijkstra’s shortest-path algorithm
15

Dijsktra describes the algorithm in English:
¨ When he designed it in 1956, most people were programming in
assembly language!
¨ Only one high-level language: Fortran, developed by John
Backus at IBM and not quite finished.
No theory of order-of-execution time —topic yet to be developed.
In paper, Dijsktra says, “my solution is preferred to another one
… “the amount of work to be done seems considerably less.”

Dijkstra, E.W. A note on two problems in Connexion with graphs.
Numerische Mathematik 1, 269–271 (1959).

4	

0	

1	

2	
 3	

16	

Dijkstra’s shortest path algorithm

The n (> 0) nodes of a graph numbered 0..n-1.	

L[0] = 2	

L[1] = 5	

L[2] = 6	

L[3] = 7	

L[4] = 0	

v	

4	

2	
 4	

1	

3	

3	

Each edge has a positive weight.	

Some node v be selected as the start node.	

Use an array L[0..n-1]: for each node w, store in
L[w] the length of the shortest path from v to w.	

weight(v1, v2) is the weight of the edge from node v1 to v2.	

Calculate length of shortest path from v to each node.	

17	

Dijkstra’s shortest path algorithm

 Develop algorithm, not just present it.	

Need to show you the state of affairs —the relation among all
variables— just before each node i is given its final value L[i].	

This relation among the variables is an invariant, because
it is always true.	

Because each node i (except the first) is given
its final value L[i] during an iteration of a loop,
the invariant is called a loop invariant.	

L[0] = 2	

L[1] = 5	

L[2] = 6	

L[3] = 7	

L[4] = 0	

18	

1. For a Settled node s, L[s] is length of shortest v → s path. 	

2. All edges leaving S go to F. 	

3. For a Frontier node f, L[f] is length of shortest v → f path	

 using only red nodes (except for f)	

4. For a Far-off node b, L[b] = ∞ 	

Frontier 	

F	

Settled 	

S	

 Far off	

f	

4	

2	
 4	

1	

3	

3	
4	

0	

1	

2	
 3	

f	

(edges leaving the black set and
edges from the blue to the red set
are not shown)	

5. L[v] = 0, L[w] > 0 for w ≠ v	

The loop invariant

v	

19	

1. For a Settled node s, L[s] is length of shortest v → r path. 	

2. All edges leaving S go to F. 	

3. For a Frontier node f, L[f] is length of shortest v → f path	

 using only Settled nodes (except for f).	

4. For a Far-off node b, L[b] = ∞. 	

Theorem. For a node f in F with minimum L value (over nodes in
F), L[f] is the length of the shortest path from v to f.	

Frontier 	

F	

Settled 	

S	

Far off	

f	

Theorem about the invariant	

f	
v	
g	

g	

Case 1: v is in S.	

Case 2: v is in F. Note that L[v] is 0; it has minimum L value	

L[g] ≥ L[f]	

5. L[v] = 0, L[w] > 0 for w ≠ v	

.	

20	

1. For s, L[s] is length of	

 shortest v→ s path. 	

2. Edges leaving S go to F. 	

 S F Far off	

3. For f, L[f] is length of	

 shortest v → f path using	

 red nodes (except for f).	

4. For b in Far off, L[b] = ∞	

5. L[v] = 0, L[w] > 0 for w ≠ v	

 	

For all w, L[w]= ∞; L[v]= 0;	

F= { v }; S= { };	

Theorem: For a node f in F	

with min L value, L[f] is	

shortest path length	

v	

The algorithm

Loopy question 1: 	

How does the loop start? What
is done to truthify the invariant?	

21	

When does loop stop? When is
array L completely calculated?	

while {	

 	

	

	

	

	

	

	

	

}	

1. For s, L[s] is length of	

 shortest v → s path. 	

2. Edges leaving S go to F. 	

 S F Far off	

3. For f, L[f] is length of	

 shortest v → f path using	

 red nodes (except for f).	

4. For b in Far off, L[b] = ∞	

5. L[v] = 0, L[w] > 0 for w ≠ v	

	

For all w, L[w]= ∞; L[v]= 0;	

F= { v }; S= { };	

Theorem: For a node f in F	

with min L value, L[f] is	

shortest path length	

F ≠ {}	

The algorithm

Loopy question 2: 	

22	

How is progress toward
termination accomplished?	

while {	

 	

	

	

	

	

	

	

	

}	

f= node in F with min L value;

Remove f from F, add it to S;	
1. For s, L[s] is length of	

 shortest v → s path. 	

2. Edges leaving S go to F. 	

 S F Far off	

3. For f, L[f] is length of	

 shortest v → f path using	

 red nodes (except for f).	

4. For b, L[b] = ∞	

5. L[v] = 0, L[w] > 0 for w ≠ v	

	

For all w, L[w]= ∞; L[v]= 0;	

F= { v }; S= { };	

Theorem: For a node f in F	

with min L value, L[f] is	

shortest path length	

f	

F ≠ {}	

The algorithm

Loopy question 3: 	

f	

23	

How is the invariant
maintained?	

while {	

 	

	

	

	

	

	

	

	

}	

f= node in F with min L value;

Remove f from F, add it to S;	
1. For s, L[s] is length of	

 shortest v → s path. 	

2. Edges leaving S go to F. 	

 S F Far off	

3. For f, L[f] is length of	

 shortest v → f path using	

 red nodes (except for f).	

4. For b, L[b] = ∞	

5. L[v] = 0, L[w] > 0 for w ≠ v	

	

For all w, L[w]= ∞; L[v]= 0;	

F= { v }; S= { };	

Theorem: For a node f in F	

with min L value, L[f] is	

shortest path length	

F ≠ {}	

for each edge (f,w) {	

 	

 	

	

}	

if (L[w] is ∞) add w to F;	

if (L[f] + weight (f,w) < L[w])	

 L[w]= L[f] + weight(f,w);	

The algorithm

Loopy question 4: 	

f	

w	

w	

Algorithm is finished	

w	

24	

For all w, L[w]= ∞; L[v]= 0;	

F= { v }; S= { };	

while F ≠ {} {	

 f= node in F with min L value;	

 Remove f from F, add it to S;	

 for each edge (f,w) {	

 if (L[w] is ∞) add w to F;	

 if (L[f] + weight (f,w) < L[w])	

 L[w]= L[f] + weight(f,w);	

 }	

}	

About implementation 1. No need to implement S.	

2. Implement F as a min-heap.	

3. Instead of ∞, use	

	
 Integer.MAX_VALUE.	

if (L[w] == Integer.MAX_VAL) {	

 L[w]= L[f] + weight(f,w);	

 add w to F;	

} else L[w]= Math.min(L[w],	

 L[f] + weight(f,w));	

S	
 F	

25	

For all w, L[w]= ∞; L[v]= 0;	

F= { v };	

while F ≠ {} {	

 f= node in F with min L value;	

 Remove f from F;	

 for each edge (f,w) {	

 if (L[w] == Integer.MAX_VAL) {	

 L[w]= L[f] + weight(f,w);	

 add w to F;	

 }	

 else L[w]= 	

 Math.min(L[w], L[f] + weight(f,w));	

 }	

}	

Execution time
S	
 F	

n nodes, reachable from v. e ≥ n-1 edges	

	
 n–1 ≤ e ≤ n*n	

O(n)	

O(n log n)	

O(e)	

 O(n-1)	

 O(n log n)	

O((e-(n-1)) log n)	

O(n)	

O(n + e)	

outer loop:	

n iterations.	

Condition
evaluated	

n+1 times.	

	

inner loop:	

e iterations.	

Condition
evaluated	

n + e times.	

 Complete graph: O(n2 log n). Sparse graph: O(n log n)	

 	

O(n)	

O(1)	

