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Readings? 

¨  Read chapter 28 
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A3 “forgot a corner case” 

while (true) 
     try {  
         if (in first column)    
              if in last row, return StoredMap; 
              fly south; refresh and save state, fly east 
         if (in last column) 

   if in last row, return StoredMap; 
              fly south; refresh and save state, fly west 
         if (row number is even) 

   fly east;  refresh and save state; 
         if (row number is odd) 

   fly west;  refresh and save state; 
         } 
     catch (cliff exception e){ 

  if in last row, return StoredMap; 
 fly south; refresh and save state 

     } 
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It’s not about 
“missing a corner 
case”.  
The design is 
seriously flawed in 
that several 
horizontal fly(…) 
calls could cause the 
Bfly to fly past an 
edge, and there is no 
easy fix for this. 



A3 “forgot a corner case” 

Direction dir= Direction.E; 
while (true) { 
     refresh and save the state; 
     // Fly the Bfly ONE tile –return array if not possible 
 
 
 
 
 
 
 
 
 
} 
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if  in first col going west or last col going east 
           if in last row, return the array; 
           fly south and change direction; 
     else try { 
                fly in direction dir; 
           } catch (cliff collision e) { 
                 if in last row, return the array; 
                 fly south and change direction; 
           } 

If you FIRST write the 
algorithm at a high level, 
ignoring Java details, you 
have a better chance of 
getting a good design 



Depth-First Search (DFS) 
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Visit all nodes of a graph reachable from r. 

4 

1 

0 5 

2 3 6 r 
Depth-first because: 
Keep going down a path until 
no longer possible 

4 

1 

0 5 

2 3 6 r 

4 

1 

0 5 

2 3 6 r 



Depth-First Search 
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• Follow edges depth-first starting from an 
arbitrary vertex r, using a stack to remember 
where you came from 

• When you encounter a vertex previously 
visited, or there are no outgoing edges, 
retreat and try another path 

• Eventually visit all vertices reachable from r 
•  If there are still unvisited vertices, repeat 
• O(m) time 

Difficult to understand! 
Let’s write a recursive procedure 



Depth-First Search 
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boolean[] visited; 
 
node u is visited means: visited[u] is true 
To visit u means to:  set visited[u] to true 
 
Node v is REACHABLE from node u if 
there is a path (u, …, v) in which all 
nodes of the path are unvisited. 
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Suppose all nodes 
are unvisited. 
 
The nodes that are 
REACHABLE 
from node 1 are 
1, 0, 2, 3, 5 
 
The nodes that are 
REACHABLE 
from 4 are 4, 5, 6. 



Depth-First Search 
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boolean[] visited; 
 
To “visit” a node u: set visited[u] to true. 
 
Node u is REACHABLE from node v if 
there is a path (u, …, v) in which all 
nodes of the path are unvisited. 
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Suppose 2 is 
already visited, 
others unvisited. 
 
The nodes that are 
REACHABLE 
from node 1 are 1, 
0, 5 
 
The nodes that are 
REACHABLE 
from 4 are 4, 5, 6. 



Depth-First Search 
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/** Node u is unvisited. Visit all nodes 
     that are REACHABLE from u. */ 
public static void dfs(int u) { 
 
 
 
 
} 

Let u be 1 
The nodes that are 
REACHABLE 
from node 1 are 
1, 0, 2, 3, 5 
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visited[u]= true; 



Depth-First Search 
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/** Node u is unvisited. Visit all nodes 
     that are REACHABLE from u. */ 
public static void dfs(int u) { 
 
 
 
 
} 

Let u be 1 
The nodes to be 
visited are 
0, 2, 3, 5 
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visited[u]= true; 

for each edge (u, v) 
    if v is unvisited then dfs(v); 

Have to do dfs on 
all unvisited 
neighbors of u 



Depth-First Search 
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/** Node u is unvisited. Visit all nodes 
     that are REACHABLE from u. */ 
public static void dfs(int u) { 
 
 
 
 
} 

Let u be 1 
The nodes to be 
visited are 
0, 2, 3, 5 
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0 5 

2 3 
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visited[u]= true; 

for each edge (u, v) 
    if v is unvisited then dfs(v); 

Suppose the for 
each loop visits 
neighbors in 
numerical order. 
Then dfs(1) visits 
the nodes in this 
order: 
1, 0, 2, 3, 5 



Depth-First Search 
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/** Node u is unvisited. Visit all nodes 
     that are REACHABLE from u. */ 
public static void dfs(int u) { 
 
 
 
} 

visited[u]= true; 
for each edge (u, v) 
    if v is unvisited then dfs(v); 

Example: There may be a different way (other than array 
visited) to know whether a node has been visited 

That’s all there is 
to the basic dfs. 

You may have to 
change it to fit a 

particular situation. 

Example: Instead of using recursion, use a loop and 
maintain the stack yourself. 



Shortest Paths in Graphs 

Problem of finding shortest (min-cost) path in a graph occurs often 
¤  Find shortest route between Ithaca and West Lafayette, IN 
¤  Result depends on notion of cost 

n Least mileage… or least time… or cheapest 
n Perhaps, expends the least power in the butterfly while 

flying fastest 
n Many “costs” can be represented as edge weights 
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Dijkstra’s shortest-path algorithm 
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Edsger Dijkstra, in an interview in 2010 (CACM):  
 … the algorithm for the shortest path, which I designed in about 
20 minutes. One morning I was shopping in Amsterdam with my 
young fiance, and tired, we sat down on the cafe terrace to drink a 
cup of coffee, and I was just thinking about whether I could do 
this, and I then designed the algorithm for the shortest path. As I 
said, it was a 20-minute invention. [Took place in 1956] 
 
Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische 
Mathematik 1, 269–271 (1959). 
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his 
contributions. As a historical record, this is a gold mine. 
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Dijkstra’s shortest-path algorithm 
15 

Dijsktra describes the algorithm in English: 
¨ When he designed it in 1956, most people were programming in 
assembly language! 
¨ Only one high-level language: Fortran, developed by John 
Backus at IBM and not quite finished. 
No theory of order-of-execution time —topic yet to be developed. 
In paper, Dijsktra says, “my solution is preferred to another one 
… “the amount of work to be done seems considerably less.” 
 
Dijkstra, E.W. A note on two problems in Connexion with graphs. 
Numerische Mathematik 1, 269–271 (1959). 
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Dijkstra’s shortest path algorithm 
 
 

The n (> 0) nodes of a graph numbered 0..n-1.	


L[0] = 2	

L[1] = 5	

L[2] = 6	

L[3] = 7	

L[4] = 0	


v	

4	


2	
 4	

1	


3	

3	


Each edge has a positive weight.	


Some node v be selected as the start node.	


Use an array L[0..n-1]: for each node w, store in 
L[w] the length of the shortest path from v to w.	


weight(v1, v2) is the weight of the edge from node v1 to v2.	


Calculate length of shortest path from v to each node.	
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Dijkstra’s shortest path algorithm 
 
 Develop algorithm, not just present it.	


Need to show you the state of affairs —the relation among all 
variables— just before each node i  is given its final value L[i].	


This relation among the variables is an invariant, because 
it is always true.	


Because each node i (except the first) is given 
its final value L[i] during an iteration of a loop, 
the invariant is called a loop invariant.	


L[0] = 2	

L[1] = 5	

L[2] = 6	

L[3] = 7	

L[4] = 0	
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1. For a Settled node s, L[s] is length of shortest v → s path.   	

2. All edges leaving S go to F.   	

3. For a Frontier node f, L[f] is length of shortest v → f path	

    using only red nodes (except for f)	

4. For a Far-off node b, L[b] = ∞ 	


Frontier 	

F	


Settled 	

S	


   Far off	


f	


4	

2	
 4	


1	

3	


3	
4	


0	


1	


2	
 3	


f	


(edges leaving the black set and 
edges from the blue to the red set 
are not shown)	


5. L[v] = 0, L[w] > 0 for w ≠ v	


The loop invariant 
 
 

v	
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1. For a Settled node s, L[s] is length of shortest v → r path.   	

2. All edges leaving S go to F.   	

3. For a Frontier node f, L[f] is length of shortest v → f path	

    using only Settled nodes (except for f).	

4. For a Far-off node b, L[b] = ∞.        	


Theorem. For a node f in F with minimum L value (over nodes in 
F), L[f] is the length of the shortest path from v to f.	


Frontier 	

F	


Settled 	

S	


Far off	


f	


Theorem about the invariant	


f	
v	
g	


g	


Case 1: v is in S.	

Case 2: v is in F. Note that L[v] is 0; it has minimum L value	


L[g] ≥ L[f]	


5. L[v] = 0, L[w] > 0 for w ≠ v	

.	
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1.  For s, L[s] is length of	

     shortest v→ s path.   	

2.  Edges leaving S go to F.   	


 S                  F          Far off	


3.  For f, L[f] is length of	

     shortest v → f path using	

     red nodes (except for f).	

4.  For b in Far off, L[b] = ∞	

5.  L[v] = 0, L[w] > 0 for w ≠ v	

 	


For all w, L[w]= ∞;   L[v]= 0;	

F=  { v };  S=  { };	


Theorem: For a node f in F	

with min L value, L[f] is	

shortest path length	


v	


The algorithm 

Loopy question 1: 	

How does the loop start? What 
is done to truthify the invariant?	
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When does loop stop? When is 
array L completely calculated?	


while                 {	

    	

	

	

	


	

	

	

	

}	


1.  For s, L[s] is length of	

     shortest v → s path.   	

2.  Edges leaving S go to F.   	


 S                  F          Far off	


3.  For f, L[f] is length of	

     shortest v → f path using	

     red nodes (except for f).	

4.  For b in Far off, L[b] = ∞	

5. L[v] = 0, L[w] > 0 for w ≠ v	

	


For all w, L[w]= ∞;   L[v]= 0;	

F=  { v };  S=  { };	


Theorem: For a node f in F	

with min L value, L[f] is	

shortest path length	


F ≠  {}	


The algorithm 

Loopy question 2: 	
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How is progress toward 
termination accomplished?	


while                 {	

    	

	

	

	


	

	

	

	

}	


f= node in F with min L value; 

Remove f from F, add it to S;	
1.  For s, L[s] is length of	

     shortest v → s path.   	

2.  Edges leaving S go to F.   	


 S                  F          Far off	


3.  For f, L[f] is length of	

     shortest v →  f path using	

     red nodes (except for f).	

4.  For b, L[b] = ∞	

5.  L[v] = 0, L[w] > 0 for w ≠ v	

	


For all w, L[w]= ∞;   L[v]= 0;	

F=  { v };  S=  { };	


Theorem: For a node f in F	

with min L value, L[f] is	

shortest path length	


f	

F ≠  {}	


The algorithm 

Loopy question 3: 	


f	
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How is the invariant 
maintained?	


while                 {	

    	

	

	

	


	

	

	

	

}	


f= node in F with min L value; 

Remove f from F, add it to S;	
1.  For s, L[s] is length of	

     shortest v → s path.   	

2.  Edges leaving S go to F.   	


 S                  F          Far off	


3.  For f, L[f] is length of	

     shortest v → f path using	

     red nodes (except for f).	

4.  For b, L[b] = ∞	

5. L[v] = 0, L[w] > 0 for w ≠ v	

	


For all w, L[w]= ∞;   L[v]= 0;	

F=  { v };  S=  { };	


Theorem: For a node f in F	

with min L value, L[f] is	

shortest path length	


F ≠  {}	


for each edge (f,w) {	

   	

   	

	

}	


if (L[w]  is ∞) add w to F;	


if (L[f] + weight (f,w) < L[w])	

    L[w]= L[f] + weight(f,w);	


The algorithm 

Loopy question 4: 	


f	

w	


w	


Algorithm is finished	


w	
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For all w, L[w]= ∞;  L[v]= 0;	

F=  { v };  S=  { };	

while F ≠  {}  {	

   f= node in F with min L value;	

       Remove f from F, add it to S;	

   for each edge (f,w) {	

     if (L[w]  is ∞) add w to F;	

     if (L[f] + weight (f,w) < L[w])	

       L[w]= L[f] + weight(f,w);	

  }	

}	


About implementation 1. No need to implement S.	

2. Implement F as a min-heap.	

3. Instead of ∞, use	

	
  Integer.MAX_VALUE.	


if (L[w] == Integer.MAX_VAL) {	

    L[w]=  L[f] + weight(f,w);	

    add w to F;	

} else  L[w]= Math.min(L[w],	

                 L[f] + weight(f,w));	


S	
 F	
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For all w, L[w]= ∞;  L[v]= 0;	

F=  { v };	

while F  ≠  {} {	

   f=  node in F with min L value;	

   Remove f from F;	

   for each edge (f,w) {	

      if (L[w] == Integer.MAX_VAL) {	

           L[w]=  L[f] + weight(f,w);	

           add w to F;	

      }	

      else L[w]=  	

           Math.min(L[w], L[f] + weight(f,w));	

   }	

}	


Execution time 
S	
 F	


n nodes, reachable from v. e ≥ n-1 edges	

	
                             n–1  ≤  e  ≤  n*n	


O(n)	

O(n log n)	


O(e)	

   O(n-1)	

   O(n log n)	


O((e-(n-1)) log n)	


O(n)	


O(n + e)	


outer loop:	

n iterations.	

Condition 
evaluated	

n+1 times.	

	


inner loop:	

e iterations.	

Condition 
evaluated	

n + e times.	


 Complete graph: O(n2 log n). Sparse graph: O(n log n)	


  	

O(n)	

O(1)	



