CS2110. GUIS: Listening to Events
Also

Example of Stepwise Refinement
and

Anonymous classes

Download the demo zip file from
course website and look at the demos

of GUI things: sliders, scroll bars,
combobox listener, etc



Developing the prelim string problem

/** s 1s a sequence of words with each pair of words separated
* by one or more blanks. Return a list of the Pig-Latin
* translations of the words, with no duplicates */

public static ArrayList<String> m(String s) {

A few points to be constantly aware of
* Focus on one thing at a time.

* Use abstraction.

* Keep things simple

* Avoid case analysis where possible

* Don’t introduce a variable unless you need it.

Word: a sequence of >= 1 lowercase letters

2



Use a loop to process string s

/** s 1s a sequence of words with each pair of words separated
* by one or more blanks. Return a list of the Pig-Latin
* translations of the words, with no duplicates */

public static ArrayList<String> m(String s) {

Which kind of loop? Problem 1s stated in

for (int k= 0; k < s.length(); k= k+1) {} terms of a sequence of
words. Therefore, the

int k= 0; loop 1s best written
while () {} with each 1teration
rocessing one word.

For-loop leads to
disaster!

Word: a sequence of >= 1 lowercase letters

3



Use abstraction to allow focus on one thing

For now, forget about what to do with each word and
concentrate on just “processing” each word, using a loop.
Later, figure out what “processing”’means.

while () {
Find first word 1n s, process it, and remove it from s

;

But: what about blanks before and after first word. Best if
we get rid of blanks before the word.

use s= s.trim();  // don’t know about it? Write a loop

Word: a sequence of >= 1 lowercase letters

4



Outline the while-loop

s= s.trim();

// inv: All processed words have been removed from s,
// and s has no surrounding blanks

while ( s.length() > 0 ) |
Process first word of s and remove it from s

Word: a sequence of >= 1 lowercase letters

5



Outline the while-loop

s= s.trim();
// inv: All processed words have been removed from s,
// and s has no surrounding blanks
while (s.length() > 0) {

// Process first word of s and remove 1t from s

int k= s.indexOf(* ”); // # of chars 1n first word

if (k <0) k= s.length();

String word=s.substring(0, k);

s= s.substring(k).trim(); Firalaliems i

last word has

} Process word no blank after
1t!

Whenever you write
b[k] or s.charAt[k] or s.substring(h, k) or list.get(k), etc.
ask yourself whether index k 1s in bounds.

6



Stepwise refinement

s= s.trim();
// inv: All processed words have been removed from s,

//

and s has no surrounding blanks

while (s.length() > 0) {

b

// Get first word of s into word and remove it from s
int k= s.indexOf(* ”);

if (k <0) k= s.length();

String word=s.substring(0, k);
s= s.substring(k).trim();

Now we can work on
processing a word, which
has to do with constructing
the ArrayList and adding

/] Process word the Pig Latin of non-
duplicate words.

Stepwise refinement: Take one (small) step at a time.
Focus on the most important one at the moment.

7



Stepwise refinement

Stepwise refinement: Take one (small) step at a time. Focus on
the most important one at the moment.

Examples of steps:

Implement an English statement by a sequence of statements
Decide on using a loop

Stub 1n a new method (Specification and header, with empty
body) because of duplicate code or to remove complexity

Add a local variable or field

Replace an English statement by an equivalent Java
statement



mainBox

/\

boardBox infoBox
/I\ //
row .. row JButton
JButton
/\ R JButton
Square ... Square Square ... Square JLabel
JLabel
JLabel

Layout Manager for Checkers
game has to process a tree

boardBox: vertical Box
pack(): Traverse the tree, row: horizontal Box
determining the space required Square: Canvas or JPanel
for each component infoBox: vertical Box

9



Listening to events: mouse click, mouse movement
into or out of a window, a keystroke, etc.

* An event 1s a mouse click, a mouse movement into or out of a
window, a keystroke, etc.

» To be able to “listen to” a kind of event, you have to:

1. Have some class C implement an interface IN that 1s
connected with the event.

2. In class C, override methods required by interface IN; these
methods are generally called when the event happens.

3. Register an object of class C as a listener for the event. That
object’s methods will be called when event happens.

We show you how to do this for clicks on buttons, clicks on
components, and keystrokes.



What is a JButton?
Instance: associated with a “button” on the GUI,
which can be clicked to do something

jb1= new JButton() // b1 has no text on it

1b2= new JButton(“first”) // ;b2 has label “first” on it

jb2.1sEnabled() // true 1ff a click on button can be
// detected

jb2.setEnabled(b); // Set enabled property

jb2.addActionListener(object); // object must have a method,
// which 1s called when button jb2 clicked (next page)

At least 100 more methods; these are most important

JButton is in package javax.swing



Listening to a JButton

|. Implement interface ActionListener:
public class C extends |Frame implements
ActionListener {

}

2. In class C override actionPerformed, which is to be called

when button is clicked:
/** Process click of button */
public void actionPerformed(ActionEvent e) {

}

3. Add an instance of class C an “action listener’ for button:
button.addActionListener(this);



/** Object has two buttons. Exactly one is enabled. */

class ButtonDemol extends JFrame
implements ActionListener {

red: listening

blue: placing

/** Class inv: exactly one of eastB, westB 1s enabled */
JButton westB= new JButton("'west");

JButton eastB= new JButton("east"); O O O mouse ...
public ButtonDemo(String t) { _— ——
super(t);

Container cp= getContentPane();
cp.add(westB, BLayout. WEST); public void actionPerformed

cp.add(eastB, BLayout, EAST); (ActionEvent e) {
westB.setEnabled(false); boolean bezstB isEnabled():
eastB.setEnabled(true); 1' N ’
westB.addActionListener(this); castB.setEnabled(!b);
eastB.addActionListener(this); westB.setEnabled(b);
pack(); setVisible(true); y j

} Listening to a Button



A JPanel that is painted BESESCE

e The JFrame content pane has a JPanel in its CENTER
and a “reset” button in its SOUTH.

e The JPanel has a horizontal box b, which contains
two vertical Boxes.

e Each vertical Box contains two instances of class Square.

e Click a Square that has no pink circle, and a pink circle is drawn.
Click a square that has a pink circle, and the pink circle disappears.
Click the rest button and all pink circles disappear.

This GUI has to listen to:
.(I) alsclick onaséu(zt;i ?.Zseot these are different kinds of

(2) a click on a Square (a Box) events, and they need
different listener methods



/** Instance: JPanel of size (WIDTH, HEIGHT). —
Green or red: */
public class Square extends JPanel {
public static final int HEIGHT= 70;
public static final int WIDTH= 70;
private int x, y; // Panel is at (X, y)
private boolean hasDisk= false;
/** Const: square at (X, y). Red/green? Parity of x+y. */
public Square(int x, int y) { Class
this.x= x; this.y=y; Square
setPreferredSize(new Dimension(WIDTH,HEIGHT));
h
/** Complement the "has pink disk" property */
public void complementDisk() {
hasDisk= ! hasDisk;
repaint(); // Ask the system to repaint the square
h

continued on later

I5



Class Graphics

An object of abstract class Graphics has methods to draw on a
component (e.g. on a JPanel, or canvas).

Major methods:
drawString(“abc”, 20, 30); drawLine(x1, yl1, x2, y2);
drawRect(x, y, width, height); fillRect(x, y, width, height);

drawOval(x, y, width, height); fillOval(x, y, width, height);
setColor(Color.red); getColor()

getFont() setFont(Font 1);
More methods

You won’t create an object of Graphics; you will be
given one to use when you want to paint a component

Graphics is in package java.awt
16



continuation of class Square

/* paint this square using g. System calls
paint whenever square has to be redrawn.*/
public void paint(Graphics g) {
if ((x+y)%2 == 0) g.setColor(Color.green);
else g.setColor(Color.red);

g fillRect(0, 0, WIDTH-1, HEIGHT-1);

if (hasDisk) {
g.setColor(Color.pink);
g.fillOval(7,7, WIDTH-14, HEIGHT-14);

¥

g.setColor(Color.black);
g.drawRect(0, 0, WIDTH-1 HEIGHT-1);

g.drawString("("+x+", "+y+")", 10, S+HEIGHT/2);

¥
¥

Class
Square

/** Remove pink disk
(if present) */
public void clearDisk() {
hasDisk= false;
// Ask system to
// repaint square
repaint();

¥

D demo




Listen to mouse event
(click, press, release, enter, leave on a component)

public interface MouseListener {  In package java.awt.event
void mouseClicked(MouseEvent ¢);
void mouseEntered(MouseEvent ¢);
void mouseExited(MouseEvent ¢);
void mousePressed(MouseEvent ¢);
void mouseReleased(MouseEvent ¢);

Having to write all of these 1n a class that implements
MouseListener, even though you don’t want to use all
of them, can be a pain. So, a class 1s provided that
implements them 1n a painless.

18



Listen to mouse event
(click, press, release, enter, leave on a component)

In package java.swing.event

public class MouselnputAdaptor

implements MouseListener, MouselnputListener {
public void mouseClicked(MouseEvent €) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent ¢) {}
public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent ¢) {}
. others ...

So, just write a subclass of MouselnputAdaptor and
] override only the methods appropriate for the application

19



Javax.swing.event.MouselnputAdapter
implements MouseListener

al

MIA

mouseClicked()
mouseEntered()
mouseExited()
mousePressed()
mouseReleased()

MouseEvents

mouseClicked() {

MouseListener
a2
JFrame
DemoMouseEvents
dmalal | labl ...| labl|...

}.

DemoMouseEvents() { ...
labl.addMouseListener(dma);

20




import javax.swing.*; A class that listens to a
import javax.swing.event.*; mouseclick in a Square
import java.awt.”*;

import java.awt.event.*; o8 U i

blue: placing

/** Contains a method that responds to a

mouse click in a Square */

public class MouseEvents This class has several methods
extends MouseInputAdapter { (that do nothing) that process
// Complement "has pink disk" property mouse events:
public void mouseClicked(MouseEvent €) { mouse click
Object ob= e.getSource(); mouse press
if (ob instanceof Square) { mouse release
((Square)ob).complementDisk(); IO LS SOOIt
1 mouse leaves component
mouse dragged beginning in
\ ; component

Our class overrides only the method that processes mouse clicks
21



public class MD2 extends JFrame . L .
implements ActionListener { Jb.addActionListener(this);

Box b= new Box(...X AXIS); b00.addMouseListener(me);

Box lefiC=new Box(..Y_AXIS); || Accvouserpstencrime):
Square b00, b01= new squares; -addMouseListener(me);

. bl1l.addMouseListener(me);
Box riteC= new Box(..Y AXIS); \
Square b10, b01= new squares;
JButton jb= new JButton("reset"); public void actionPerformed (
ActionEvent e) {
call clearDisk() for
b00, b01, b10, b11

MouseEvents me=

new MouseEvents();
/** Constructor: ... */

public MouseDemo2() { j
super(t); red: listening
place components on content pane; .
pack, make unresizeable, visible; blue: placing

Class MouseDemo?2

22



Listening to the keyboard

import java.awt.*; import java.awt.event.*;  import javax.swing.*;

public class AllCaps extends KeyAdapter { red: listening
JFrame capsFrame= new JFrame(); \ lue: placin
JLabel capsLabel= new JLabel(); ) g
public AlICaps() { |. Extend this class.

capsLabel.setHorizontal Alignment(SwingConstants. CENTER);
capsLabel.setText(":)");

capsFrame.setSize(200,200); 3.Add this instance as a
Container c= capsFrame.getContentPane(); key listener for the frame
c.add(capsLabel); 2. Override this method.
capsFrame.addKeyListener(this); It is called when a key
}capsFrame.show(); —stroke is detected.

L=

public void keyPressed (KeyEvent e) {
char typedChar= e.getKeyChar();
capsLabel.setText(("" + typedChar + "").toUpperCase());

¥
¥

23



public class BDemo3 extends JFrame implements ActionListener {
private JButton wButt, eButt .. .;

public ButtonDemo3() { Have a different
Add buttons to content pane, enable listener for each
ne, disable the other button

wButt.addActionListener(this);
eButt.addActionListener(new BeListener()); }

public void actionPerformed(ActionEvent e) {
boolean b= eButt.isEnabled();

eButt.setEnabled(!b); wButt.setEnabled(b); } ;
\ Doesn’t work!

Can’t
reference
cButt, wButt

A listener for eastButt
class BeListener implements ActionListener {

public void actionPerformed(ActionEvent e) {
boolean b= eButt.isEnabled();
eButt.setEnabled(!b); wButt.setEnabled(b);

¥

24



BD3@2

BeLis@80
wButt| | eButt| ... || BD3 BeLis
aPerf(... eButt ... wButt ...} aPerf(... eButt ... wButt ...}
listens to wButt listens to eButt but can’t reference fields
BD3@?2 Make Bel.istener an inner
wButt| . | eButt| . BD3 class.

aPerf...(... eButt ... wButt..} . .
Inside-out rule then gives

BeLis@80 access to wButt, eButt
BelLis

aPerf(... eButt ... wButt ...}

25



Solution to problem: Make BeListener an inner class.

Just as you can
declare variables
and methods within

. a class, you can
— public ButtonDemo3() { ... } declare a class

public class BDemo3 extends Jframe
implements ActionListener {
— private JButton wButt, eButt ...;

— public void actionPerformed(ActionEvent within a class

— private class BeListener implements ActionListener { ... }

/

Inside-out rule says that methods 1n here

Can reference all the ﬁellds and metlhods

We demo this using ButtonDemo3

26



Problem: can’t give a function as a parameter:

o Why not just give
public void m() { ... cButt the
eButt.addActionListener(aP); function to call?

J Can’t do 1t in Java!
public void aP(ActionEvent e) { body } Can in some

other languages

public void m() { ...

eButt.addActionListener(new C()); Java says: provide

} class C that wraps
method; give eButt

public class C implements IN { an object of class C

public void aP(ActionEvent ¢) { body }
h

C must implement interface IN that has abstract method aP

27



Have a class for which only one object is created?

Use an anonymous class.

Use sparingly, and only when the anonymous class has 1 or 2 methods
in 1it, because the syntax is ugly, complex, hard to understand.

public class BDemo3 extends JFrame implements ActionListener {
private JButton wButt, eButt .. .;

public ButtonDemo3() { ...
eButt.addActionListener(new BeListener());

¥

public void actionPerformed(ActionEvente) { ... }

private class BeListener implements ActionListener {
public void actionPerformed(ActionEvent ) { body }

¥

1 object of BeListener created. Ripe for making anonymous

¥

28



Making class anonymous will replace new BeListener()

Expression that creates object of BeListener

eButt.addActionListener( new BeListener () );

implements ActiyZListener

private class BeListe
{ declarations in efass }

2. Wse name of interface that

/ BeListener implements

1. Write new

3. Write ney ActionListener () constructor call
4. Writg ngw ActionListener () 4. Put 1n class body
{ declarations in class }

5. Replace new BelListener() by new-expression

29



