
CS2110. GUIS: Listening to Events	

Also	

	

Example of Stepwise Refinement	

and	

Anonymous classes	

1	

Download the demo zip file from
course website and look at the demos
of GUI things: sliders, scroll bars,
combobox listener, etc	

Developing the prelim string problem	

/** s is a sequence of words with each pair of words separated
 * by one or more blanks. Return a list of the Pig-Latin
 * translations of the words, with no duplicates */
public static ArrayList<String> m(String s) {

2	

Word: a sequence of >= 1 lowercase letters

A few points to be constantly aware of
•  Focus on one thing at a time.
•  Use abstraction.
•  Keep things simple
•  Avoid case analysis where possible
•  Don’t introduce a variable unless you need it.

Use a loop to process string s	

/** s is a sequence of words with each pair of words separated
 * by one or more blanks. Return a list of the Pig-Latin
 * translations of the words, with no duplicates */
public static ArrayList<String> m(String s) {

3	

Word: a sequence of >= 1 lowercase letters

Which kind of loop?
for (int k= 0; k < s.length(); k= k+1) {}

int k= 0;
while () {}

Problem is stated in
terms of a sequence of
words. Therefore, the

loop is best written
with each iteration

processing one word.
For-loop leads to

disaster!

Use abstraction to allow focus on one thing	

For now, forget about what to do with each word and
concentrate on just “processing” each word, using a loop.
Later, figure out what “processing”means.

4	

Word: a sequence of >= 1 lowercase letters

while () {
 Find first word in s, process it, and remove it from s
}

But: what about blanks before and after first word. Best if
we get rid of blanks before the word.

 use s= s.trim(); // don’t know about it? Write a loop

Outline the while-loop	

5	

Word: a sequence of >= 1 lowercase letters

s= s.trim();

while () {
 Process first word of s and remove it from s

}

// inv: All processed words have been removed from s,
// and s has no surrounding blanks

s.length() > 0

Outline the while-loop	

6	

s= s.trim();
// inv: All processed words have been removed from s,
// and s has no surrounding blanks
while (s.length() > 0) {
 // Process first word of s and remove it from s

}

int k= s.indexOf(“ ”); // # of chars in first word

String word= s.substring(0, k); Problem: the

last word has
no blank after

it!

Whenever you write
b[k] or s.charAt[k] or s.substring(h, k) or list.get(k), etc.
ask yourself whether index k is in bounds.

if (k < 0) k= s.length();

s= s.substring(k).trim();
Process word

Stepwise refinement	

7	

s= s.trim();
// inv: All processed words have been removed from s,
// and s has no surrounding blanks
while (s.length() > 0) {
 // Get first word of s into word and remove it from s

}

int k= s.indexOf(“ ”);

String word= s.substring(0, k);

Now we can work on
processing a word, which

has to do with constructing
the ArrayList and adding

the Pig Latin of non-
duplicate words.

if (k < 0) k= s.length();

s= s.substring(k).trim();

// Process word
 …

Stepwise refinement: Take one (small) step at a time.
Focus on the most important one at the moment.

Stepwise refinement	

8	

Stepwise refinement: Take one (small) step at a time. Focus on
the most important one at the moment.
Examples of steps:
•  Implement an English statement by a sequence of statements
•  Decide on using a loop
•  Stub in a new method (Specification and header, with empty

body) because of duplicate code or to remove complexity
•  Add a local variable or field
•  Replace an English statement by an equivalent Java

statement

9	

mainBox

boardBox infoBox

boardBox: vertical Box
row: horizontal Box
Square: Canvas or JPanel
infoBox: vertical Box

row row …

Square … Square Square … Square

JButton
JButton

JButton
JLabel

JLabel
JLabel

pack(): Traverse the tree,
determining the space required
for each component

Layout Manager for Checkers
game has to process a tree

10	

Listening to events: mouse click, mouse movement
into or out of a window, a keystroke, etc. 	

• An event is a mouse click, a mouse movement into or out of a
window, a keystroke, etc.

• To be able to “listen to” a kind of event, you have to:

1. Have some class C implement an interface IN that is
connected with the event.

2.  In class C, override methods required by interface IN; these
methods are generally called when the event happens.

3. Register an object of class C as a listener for the event. That
object’s methods will be called when event happens.

We show you how to do this for clicks on buttons, clicks on
components, and keystrokes.	

11	

What is a JButton?
Instance: associated with a “button” on the GUI,

which can be clicked to do something

jb1= new JButton() // jb1 has no text on it
jb2= new JButton(“first”) // jb2 has label “first” on it

jb2.isEnabled() // true iff a click on button can be
 // detected
jb2.setEnabled(b); // Set enabled property

jb2.addActionListener(object); // object must have a method,
 // which is called when button jb2 clicked (next page)

At least 100 more methods; these are most important	

JButton is in package javax.swing	

12	

Listening to a JButton
1.  Implement interface ActionListener: ���

public class C extends JFrame implements���
 ... 	
 ActionListener {���
}	

2.  In class C override actionPerformed, which is to be called
when button is clicked:	

/** Process click of button */	

public void actionPerformed(ActionEvent e) {	

 ...	

}	

	

3. Add an instance of class C an “action listener” for button:	

button.addActionListener(this);	

13	

/** Object has two buttons. Exactly one is enabled. */
class ButtonDemo1 extends JFrame

 {
 /** Class inv: exactly one of eastB, westB is enabled */
 JButton westB= new JButton("west");
 JButton eastB= new JButton("east");
 public ButtonDemo1(String t) {

 super(t);
 Container cp= getContentPane();
 cp.add(westB, BLayout.WEST);
 cp.add(eastB, BLayout, EAST);
 westB.setEnabled(false);
 eastB.setEnabled(true);

 pack(); setVisible(true);
 }

public void actionPerformed
 (ActionEvent e) {
 boolean b=
 eastB.isEnabled();
 eastB.setEnabled(!b);
 westB.setEnabled(b);
 }
}

red: listening	

blue: placing	

Listening to a Button	

 implements ActionListener 	

westB.addActionListener(this);
eastB.addActionListener(this);

14	

A JPanel that is painted	

•  The JFrame content pane has a JPanel in its CENTER���
 and a “reset” button in its SOUTH.	

•  The JPanel has a horizontal box b, which contains���
two vertical Boxes.	

•  Each vertical Box contains two instances of class Square.	

•  Click a Square that has no pink circle, and a pink circle is drawn. ���
 Click a square that has a pink circle, and the pink circle disappears. ���
 Click the rest button and all pink circles disappear.	

•  This GUI has to listen to: ���
(1) a click on Button reset���
(2) a click on a Square (a Box) ���
	

these are different kinds of
events, and they need
different listener methods	

15	

/** Instance: JPanel of size (WIDTH, HEIGHT).	

 Green or red: */	

public class Square extends JPanel { 	

 public static final int HEIGHT= 70; 	

 public static final int WIDTH= 70; 	

 private int x, y; // Panel is at (x, y)	

 private boolean hasDisk= false; 	

 /** Const: square at (x, y). Red/green? Parity of x+y. */	

 public Square(int x, int y) {	

 this.x= x; this.y= y;	

 setPreferredSize(new Dimension(WIDTH,HEIGHT));	

 }	

 /** Complement the "has pink disk" property */	

 public void complementDisk() { 	

 hasDisk= ! hasDisk;	

 repaint(); // Ask the system to repaint the square	

 } 	

Class
Square	

continued on later	

16	

Class Graphics	

 An object of abstract class Graphics has methods to draw on a
component (e.g. on a JPanel, or canvas). 	

	

Major methods:	

drawString(“abc”, 20, 30); drawLine(x1, y1, x2, y2);	

drawRect(x, y, width, height); fillRect(x, y, width, height);	

drawOval(x, y, width, height); fillOval(x, y, width, height);	

setColor(Color.red); getColor()	

getFont() setFont(Font f);	

More methods	

Graphics is in package java.awt	

You won’t create an object of Graphics; you will be
given one to use when you want to paint a component

17	

Class
Square	

 	

 /** Remove pink disk	

 (if present) */	

 public void clearDisk() {	

 hasDisk= false;	

 // Ask system to	

 // repaint square	

 repaint();	

 } 	

continuation of class Square	
 	

/* paint this square using g. System calls	

 paint whenever square has to be redrawn.*/	

 public void paint(Graphics g) {	

 if ((x+y)%2 == 0) g.setColor(Color.green);	

 else g.setColor(Color.red);	

 g.fillRect(0, 0, WIDTH-1, HEIGHT-1);	

 if (hasDisk) {	

 g.setColor(Color.pink);	

 g.fillOval(7, 7, WIDTH-14, HEIGHT-14);	

 }	

 g.setColor(Color.black);	

 g.drawRect(0, 0, WIDTH-1,HEIGHT-1);	

 g.drawString("("+x+", "+y+")", 10, 5+HEIGHT/2);	

 } 	

}	

18	

Listen to mouse event���
(click, press, release, enter, leave on a component) 	

public interface MouseListener {	

 void mouseClicked(MouseEvent e);
 void mouseEntered(MouseEvent e);
 void mouseExited(MouseEvent e);
 void mousePressed(MouseEvent e);
 void mouseReleased(MouseEvent e);
}	

In package java.awt.event

Having to write all of these in a class that implements
MouseListener, even though you don’t want to use all
of them, can be a pain. So, a class is provided that
implements them in a painless.

19	

Listen to mouse event���
(click, press, release, enter, leave on a component) 	

public class MouseInputAdaptor	

 implements MouseListener, MouseInputListener { 	

 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 … others …

}	

In package java.swing.event

So, just write a subclass of MouseInputAdaptor and
override only the methods appropriate for the application

Javax.swing.event.MouseInputAdapter���
	
 implements MouseListener	

20	

 DemoMouseEvents() { …

 …
 }

DemoMouseEvents

a2

 …

JFrame

a1 dma … lab1 … lab1

lab1.addMouseListener(dma);

mouseClicked()
mouseEntered()
mouseExited()
mousePressed()
mouseReleased()

MIA
a1

mouseClicked() {

 …

}

MouseEvents

MouseListener

21	

A class that listens to a
mouseclick in a Square 	

import javax.swing.*;	

import javax.swing.event.*;	

import java.awt.*;	

import java.awt.event.*;	

	

/** Contains a method that responds to a	

 mouse click in a Square */	

public class MouseEvents	

 extends MouseInputAdapter {	

 // Complement "has pink disk" property	

 public void mouseClicked(MouseEvent e) {	

 Object ob= e.getSource();	

 if (ob instanceof Square) {	

 ((Square)ob).complementDisk();	

 }	

 }	

}	

This class has several methods
(that do nothing) that process

mouse events:	

mouse click	

mouse press	

mouse release	

mouse enters component	

mouse leaves component	

mouse dragged beginning in
component	

Our class overrides only the method that processes mouse clicks	

red: listening	

blue: placing	

22	

Class MouseDemo2	

public class MD2 extends JFrame

 Box b= new Box(…X_AXIS);
 Box leftC= new Box(…Y_AXIS);
 Square b00, b01= new squares;
 Box riteC= new Box(..Y_AXIS);
 Square b10, b01= new squares;
 JButton jb= new JButton("reset");
	

 	

 /** Constructor: … */	

 public MouseDemo2() {	

 super(t);	

 place components on content pane;	

 pack, make unresizeable, visible;	

 	

 jb.addActionListener(this);
 b00.addMouseListener(me);
 b01.addMouseListener(me);
 b10.addMouseListener(me);
 b11.addMouseListener(me);
}
	

red: listening	

blue: placing	

 implements ActionListener {

 public void actionPerformed (
 ActionEvent e) {
 call clearDisk() for
 b00, b01, b10, b11
}

MouseEvents me=
 new MouseEvents();

23	

Listening to the keyboard	

import java.awt.*; import java.awt.event.*; import javax.swing.*;	

	

public class AllCaps extends KeyAdapter {	

 JFrame capsFrame= new JFrame();	

 JLabel capsLabel= new JLabel();	

 	

 public AllCaps() {	

 capsLabel.setHorizontalAlignment(SwingConstants.CENTER);	

 capsLabel.setText(":)");	

 capsFrame.setSize(200,200);	

 Container c= capsFrame.getContentPane();	

 c.add(capsLabel);	

 capsFrame.addKeyListener(this);	

 capsFrame.show();	

 }	

 	

 public void keyPressed (KeyEvent e) {	

 char typedChar= e.getKeyChar();	

 capsLabel.setText(("'" + typedChar + "'").toUpperCase());	

 }	

}	

1. Extend this class. 	

2. Override this method.
It is called when a key
stroke is detected. 	

3. Add this instance as a
key listener for the frame	

red: listening	

blue: placing	

public class BDemo3 extends JFrame implements ActionListener {	

 private JButton wButt, eButt …; 	

 public ButtonDemo3() {	

 Add buttons to content pane, enable 	

 ne, disable the other	

 wButt.addActionListener(this);	

 eButt.addActionListener(new BeListener()); }	

 public void actionPerformed(ActionEvent e) {	

 boolean b= eButt.isEnabled();	

 eButt.setEnabled(!b); wButt.setEnabled(b); }	

 }	

	

class BeListener implements ActionListener {	

 public void actionPerformed(ActionEvent e) {	

 	
 boolean b= eButt.isEnabled();	

 	
 eButt.setEnabled(!b); wButt.setEnabled(b);	

 	
 }	

	
 24	

24	

A listener for eastButt	

Doesn’t work!
Can’t

reference
eButt, wButt

Have a different
listener for each

button

25	

25	

BD3@2	

BD3	
eButt	
…	

aPerf(… eButt … wButt ...}	

wButt	
 …	

BeLis@80	

BeLis	

aPerf(… eButt … wButt ...}	

Make BeListener an inner
class.

Inside-out rule then gives

access to wButt, eButt

BD3@2	

BD3	
eButt	
 …	

aPerf…(… eButt … wButt..}	

wButt	
 …	

BeLis@80	

BeLis	

aPerf(… eButt … wButt ...}	

listens to wButt	
 listens to eButt but can’t reference fields	

Solution to problem: Make BeListener an inner class.	

	

public class BDemo3 extends Jframe 	

 implements ActionListener {	

 private JButton wButt, eButt …; 	

 public ButtonDemo3() { … }	

 public void actionPerformed(ActionEvent e) { … }	

 private class BeListener implements ActionListener { … }	

	

26	

26	

Just as you can
declare variables

and methods within
a class, you can

declare a class
within a class

Inside-out rule says that methods in here
Can reference all the fields and methods

We demo this using ButtonDemo3

27	

27	

Problem: can’t give a function as a parameter:	

public void m() { …
 eButt.addActionListener(aP);
}

public void aP(ActionEvent e) { body }

Why not just give
eButt the

function to call?
Can’t do it in Java!

Can in some
other languages

public void m() { …
 eButt.addActionListener(new C());
}

public class C implements IN {
 public void aP(ActionEvent e) { body }
}

Java says: provide
class C that wraps

method; give eButt
an object of class C

C must implement interface IN that has abstract method aP

Have a class for which only one object is created?	

Use an anonymous class.	

Use sparingly, and only when the anonymous class has 1 or 2 methods
in it, because the syntax is ugly, complex, hard to understand.	

	

public class BDemo3 extends JFrame implements ActionListener {	

 private JButton wButt, eButt …; 	

 public ButtonDemo3() { … 	

 eButt.addActionListener(new BeListener());	

 }	

 public void actionPerformed(ActionEvent e) { … }	

 private class BeListener implements ActionListener {	

 public void actionPerformed(ActionEvent e) { body }	

 }	

}	

28	

28	

1 object of BeListener created. Ripe for making anonymous

Making class anonymous will replace new BeListener()	

	

	

 eButt.addActionListener(new BeListener ());	

 private class BeListener implements ActionListener	

 { declarations in class }	

}	

29	

29	

Expression that creates object of BeListener

1. Write new

2. Write new ActionListener

2. Use name of interface that
BeListener implements

3. Write new ActionListener ()
3. Put in arguments of

constructor call

4. Write new ActionListener ()
 { declarations in class }

4. Put in class body

5. Replace new BeListener() by new-expression

