
1	

GUIS: Graphical User Interfaces	

Their mouse had a mean time between failure of … a week … it would jam
up irreparably, or ... jam up on the table-- ... It had a flimsy cord whose
wires would break. Steve Jobs: "... Xerox says it can't be built for < $400, I
want a $10 mouse that will never fail and can be mass produced, because
it's going to be the primary interface of the computer ..."

... Dean Hovey ... came back, "I've got some good and some bad news.
Good news: we've got a new project with Apple. Bad news: I told Steve
we'd design a mouse for 10 bucks."

... year later ... we … filed … and were granted a patent, on the electro-
mechanical-optical mouse of today; ... we ended up ... [making] the mouse
as invisible to people as it is today.

Steve Sachs interview on first computer with GUI: Apple Lisa (~$10K in 1982).	

http://library.stanford.edu/mac/primary/interviews/sachs/trans.html!

2	

Prelim 1	

This histogram is for the Corrected Prelim 1.	

���
95..99 006 * A+���
90..95 026 ***** A to A+���
85..90 057 ************ A- to A���
80..85 094 ******************* B to B+���
75..80 111 *********************** B- to B���
70..75 076 **************** C to C+���
65..70 035 ******* C- to C���
60..65 020 **** C- ���
55..60 010 ** D to D+���
50..55 006 * D- to D

1. Fluency in Basic Java:	

Loops, Strings, arrays	

2. Fluency with recursion	

3. Trees are defined
recursively. Therefore
recursion is the natural
tool for processing trees 	

A binary tree consists of a root node,
possibly a left binary tree, and possibly a
right binary tree	

4. Strive for simplicity,
brevity, clarity, beauty	

Answering a question on prelim 1

/** An instance is a node of a binary tree. */
public class TreeNode {
 private int val; // Value of node.
 private TreeNode left; // Left child --null if none.
 private TreeNode right; // Right child --null if none.

 /** Return true iff following properties hold:	

 * 1. All values in the tree with this node as root are >= min.	

 * 2. All values in the tree with this node as root are <= max.	

 * 3. The tree with this node as its root is a BST. */	

 public boolean isBST(int min, int max) {

}

3	

Look for simple solution	

	

Draw a binary tree for insight 	

Draw a binary tree, making use of
the recursive definition of a binary tree.

4	

binary trees���
--but they may be null	

left	
 right	

Try for something simple --always

 /** Return true iff following properties hold:
 * 1. All values in the tree with this node as
 root are >= min.
 * 2. All values in the tree with this node as
 root are <= max.
 * 3. This tree is a BST. */
 public boolean isBST(int min, int max) {

 }

5	

Try to keep things simple!	

	

If things work out, may be able to write a single
return statement, with each of the 3 points in it.	

left	
 right	

return

Points 1 and 2 for root value

 /** Return true iff following properties hold:
 * 1. All values in the tree with this node as
 root are >= min.
 * 2. All values in the tree with this node as
 root are <= max.
 * 3. This tree is a BST. */
 public boolean isBST(int min, int max) {

 return

 }

6	

Try to keep things simple!	

For points 1 and 2, have to test the root	

left	
 right	

min <= val && val <= max

Points 1 and 2 for subtrees

 /** Return true iff following properties hold:
 * 1. All values in the tree with this node as
 root are >= min.
 * 2. All values in the tree with this node as
 root are <= max.
 * 3. This tree is a BST. */
 public boolean isBST(int min, int max) {

 return min <= val && val <= max

 }

7	

But the subtree values have to be in same range 	

(If the subtrees exist!!! Always think of this case)	

Use recursion 	

left	
 right	

 &&
(left == null || left. isBST(min, max)) &&
(right == null || right.isBST(min, max))

Point 3

 /** Return true iff following properties hold:
 * 1. All values in the tree with this node as
 root are >= min.
 * 2. All values in the tree with this node as
 root are <= max.
 * 3. This tree is a BST. */
 public boolean isBST(int min, int max) {

 return min <= val && val <= max &&
 (left == null ||left. isBST(min, max)) &&
 (right == null || right.isBST(min, max)) ;

 }

8	

That takes care of points 1, 2. Point 3?	

Values in left subtree have to be < val.	

Change the argument to isBST. Right subtree similar	

left	
 right	

val-1
val-1

9	

GUI (Graphical User Interface)	

•  Provides a friendly interface between user and program

•  Allows event-driven or reactive programming: The program reacts
to events such as button clicks, mouse movement, keyboard input

•  Often is multi-threaded: Different threads of execution can be
going on simultaneously

We use Java’s two packages for doing GUIs:

•  AWT (Abstract or Awful Window Toolkit) —first one
•  Swing —a newer one, which builds on AWT as much as possible

Two aspects to making a GUI:

1.  Placing components (buttons, text, etc.) in it. TODAY
2.  Listening/responding to events Next Lecture

10	

Class JFrame	

JFrame object: associated with a window on your monitor. 	

Generally, a GUI is a JFrame object with various components
placed in it	

Class JFrame is in package javax.swing	

Some methods in a JFrame object
hide() show() setVisible(boolean)
getX() getY() (coordinates of top-left point)
getWidth() getHeight() setLocation(int, int)
getTitle() setTitle(String)
getLocation() setLocation(int, int)

Over 100 methods in a JFrame object!

11	

Placing components in a JFrame	

 public class C extends JFrame {	

 public C() {	

 Container cp= getContentPane();	

 JButton jb= new JButton(“Click here”);	

 JLabel jl= new JLabel(“label 2”);	

 cp.add(jb, BorderLayout.EAST);	

 cp.add(jl, BorderLayout.WEST);	

 pack();	

 setVisible(true);	

 }	

Layout manager: Instance controls placement of components.	

JFrame layout manager default: BorderLayout.	

BorderLayout layout manager: Can place 5 components:	

JFrameDemo.java	

South	

East	
West	
Center	

North	

12	

Putting components in a JFrame	

import java.awt.*; import javax.swing.*;
/** Demonstrate placement of components in a JFrame.
 Places five components in 5 possible areas:
 (1) a JButton in the east, (2) a JLabel in the west,
 (3) a JLabel in the south, (4) a JTextField in the north
 (5) a JTextArea in the center. */

public class ComponentExample extends JFrame {
 /** Constructor: a window with title t and 5 components */
 public ComponentExample(String t) {
 super(t);
 Container cp= getContentPane();
 cp.add(new JButton("click me"), BorderLayout.EAST);
 cp.add(new JTextField("type here", 22), BorderLayout.NORTH);
 cp.add(new JCheckBox("I got up today"), BorderLayout.SOUTH);
 cp.add(new JLabel("label 2"), BorderLayout.WEST);
 cp.add(new JTextArea("type\nhere", 4, 10), BorderLayout.CENTER);
 pack();
 }

ComponentExample.java	

Add components to
its contentPane	

13	

Packages --Components	

Packages that contain classes that deal with GUIs:
java.awt: Old package. javax.swing: New package.

javax.swing has a better way of listening to buttons,
text fields, etc. Components are more flexible.

JButton, Button: Clickable button
JLabel, Label: Line of text
JTextField, TextField: Field into which the user can type
JTextArea, TextArea: Many-row field into which user can type
JPanel, Panel: Used for graphics; to contain other components
JCheckBox: Checkable box with a title
JComboBox: Menu of items, one of which can be checked
JRadioButton: Same functionality as JCheckBox
Container: Can contain other components
Box: Can contain other components	

Component: Something that can be placed in a GUI
window. They are instances of certain classes, e.g.

Jxxxx: in
Swing, with
xxxx in awt.

14	

Basic Components	

Component!
 !Button, Canvas!
 !Checkbox, Choice!
 !Label, List, Scrollbar!
 !TextComponent!
 ! !TextField, TextArea!
 !Container!
 ! !JComponent!
! ! !AbstractButton!
! ! ! !JButton!
! ! ! !JToggleButton!
! ! ! ! !JCheckBox!
! ! ! ! !RadioButton!
! ! !JLabel, JList!
! ! !JOptionPane, JPanel!
! ! !JPopupMenu, JScrollBar, JSlider!
! ! !JTextComponent!
! ! !JTextField, JTextArea!

Component: Something that can be
placed in a GUI window. These are

the basic ones used in GUIs

Note the use of subclasses
to provide structure and
efficiency. For example,

there are two kinds of
JToggleButtons, so that

class has two subclasses.

15	

Components that can contain other components	

Component!
 !Box!
 !Container!
 ! !JComponent!
! ! !JPanel!
! ! !Panel!
! ! ! !Applet!
!Window!
! ! !Frame!
! ! ! !JFrame!
! ! !JWindow!

java.awt is the old GUI package.

javax.swing is the new GUI package.
When they wanted to use an old name,
they put J in front of it.

(e.g. Frame and JFrame)

When constructing javax.swing, the
attempt was made to rely on the old
package as much as possible.

So, JFrame is a subclass of Frame.

But they couldn’t do this with JPanel.

16	

import java.awt.*; import javax.swing.*;	

/** Instance has labels in east /west, JPanel with four buttons in center. */	

public class PanelDemo extends JFrame {	

 JPanel p= new JPanel();	

 /** Constructor: a frame with title "Panel demo", labels in east/west,	

 blank label in south, JPanel of 4 buttons in the center */	

 public PanelDemo() {	

 super("Panel demo");	

 p.add(new JButton("0")); p.add(new JButton("1"));	

 p.add(new JButton("2")); p.add(new JButton("3"));	

 Container cp= getContentPane();	

 cp.add(new JLabel("east"), BorderLayout.EAST);	

 cp.add(new JLabel("west"), BorderLayout.WEST);	

 cp.add(new JLabel(" "), BorderLayout.SOUTH);	

 cp.add(p, BorderLayout.CENTER);	

 pack(); 	

 }	

}	

JPanel as a
container	

JPanel layout manager default: FlowLayout.	

FlowLayout layout manager: Place any number of components.
They appear in the order added, taking as many rows as necessary.	

17	

import javax.swing.*; import java.awt.*;	

/** Demo class Box. Comment on constructor says how frame is laid out. */	

public class BoxDemo extends JFrame {	

 /** Constructor: frame with title "Box demo", labels in the east/west,	

 blank label in south, horizontal Box with 4 buttons in center. */	

 public BoxDemo() {	

 super("Box demo");	

 Box b= new Box(BoxLayout.X_AXIS); 	

 b.add(new JButton("0")); b.add(new JButton("1"));	

 b.add(new JButton("2")); b.add(new JButton("3"));	

 Container cp= getContentPane();	

 cp.add(new JLabel("east"), BorderLayout.EAST);	

 cp.add(new JLabel("west"), BorderLayout.WEST);	

 cp.add(new JLabel(" "), BorderLayout.SOUTH);	

 cp.add(b, BorderLayout.CENTER);	

 pack();	

 }	

}	

Class Box: a
container	

Box layout manager default: BoxLayout.	

BoxLayout layout manager: Place any number of components.
They appear in the order added, taking only one row.	

18	

public class BoxDemo2 extends JFrame {	

 /** Constructor: frame with title t and 3 columns with n, n+1, and n+2 buttons. */	

 public BoxDemo2(String t, int n) {	

 	
super(t);	

	
// Create Box b1 with n buttons.	

 	
 	
Box b1= new Box(BoxLayout.Y_AXIS);	

 	
 	
for (int i= 0; i != n; i= i+1)	

 	
 	
 	
b1.add(new JButton(”1 " + i));	

 	
// Create Box b2 with n+1 buttons.	

 	
Box b2= …	

 	
// Create Box b3 with n+2 buttons.	

 	
Box b3= …	

// Create horizontal box b containing b1, b2, b3	

 	
 	
Box b= new Box(BoxLayout.X_AXIS);	

 	
 	
b.add(b1);	

 	
 	
b.add(b2);	

 	
 	
b.add(b3); 	
	

	
Container cp= getContentPane();	

 	
cp.add(b, BorderLayout.CENTER);	

	
pack(); show();	

 }	

Boxes within a Box ���
3 vertical boxes, each
a column of buttons,

are placed in a
horizontal box	

BoxLayout layout
manager: Place any

number of components.
They appear in the

order added, taking only
one row.	

19	

To simulate using a BoxLayout manager for a JFrame, create a Box and
place it as the sole component of the JFrame:

 JFrame jf= new JFrame(“title”);
 Box b= new Box(BoxLayout.X_AXIS);
 Add components to b;
 jf.add(b,BorderLayout.CENTER);

Simulate BoxLayout Manager in a JFrame	

1.  Start developing a GUI by changing an already existing one. A lot
of details. Hard to get all details right when one starts from scratch and
has little idea about the Java GUI package.

2.  Showed how to place components in a GUI. Next time: how to
“listen” to things like button clicks in a GUI.

