
3/11/14 

1 

SORTING AND ASYMPTOTIC 
COMPLEXITY 

Lecture 12 
CS2110 – Spring 2014 

File searchSortAlgorithms.zip  
on course website (lecture 
notes for lectures 12, 13) 
contains ALL searching/
sorting algorithms. Download 
it and look at algorithms 

Execution of logarithmic-space Quicksort 
2 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // inv; b[h..k] is sorted if b[h1..k1] is 
    while (size of b[h1..k1] > 1) { 
          int j= partition(b, h1, k1); 
          // b[h1..j-1] <= b[j] <= b[j+1..k1] 
          if (b[h1..j-1] smaller than b[j+1..k1])  
                {  QS(b, h, j-1);  h1=  j+1; } 
         else   
                {QS(b, j+1, k1);  k1=  j-1; } 
    } 
} 

Last lecture ended with 
presenting this 

algorithm. There was no 
time to explain it. We 

now show how it is 
executed in order to 

illustrate how the 
invariant is maintained 

Call  QS(b, 0, 11); 
3 

public static void QS(int[] b, int h, int k) { 
  int h1= h; int k1= k; 
  // inv; b[h..k] is sorted if b[h1..k1] is 
  while (size of b[h1..k1] > 1) { 
      int j= partition(b, h1, k1); 
      // b[h1..j-1] <= b[j] <= b[j+1..k1] 
      if (b[h1..j-1] smaller than b[j+1..k1])  
         {  QS(b, h, j-1);  h1=  j+1; } 
      else {QS(b, j+1, k1);  k1=  j-1; } 
   } 
} 

 3   4   8   7   6   8   9   1   2   5   7   9 
0                                                     11             

h  0    k  11    

h1  0    k1  11    

Initially, h is 0 and k is 11. 
The initialization stores 0 
and 11 in h1 and k1. 
The invariant is true since 
h = h1 and k = k1. 

j  ?    

Call  QS(b, 0, 11); 
4 

public static void QS(int[] b, int h, int k) { 
  int h1= h; int k1= k; 
  // inv; b[h..k] is sorted if b[h1..k1] is 
  while (size of b[h1..k1] > 1) { 
      int j= partition(b, h1, k1); 
      // b[h1..j-1] <= b[j] <= b[j+1..k1] 
      if (b[h1..j-1] smaller than b[j+1..k1])  
         {  QS(b, h, j-1);  h1=  j+1; } 
      else {QS(b, j+1, k1);  k1=  j-1; } 
   } 
} 

 2   1   3   7   6   8   9   4   8   5   7   9 
0          j                                           11             

h  0    k  11    

h1  0    k1  11    

The assignment to j 
partitions b, making it 
look like what is below. 
The two partitions are 
underlined 

j  2    

Call  QS(b, 0, 11); 
5 

public static void QS(int[] b, int h, int k) { 
  int h1= h; int k1= k; 
  // inv; b[h..k] is sorted if b[h1..k1] is 
  while (size of b[h1..k1] > 1) { 
      int j= partition(b, h1, k1); 
      // b[h1..j-1] <= b[j] <= b[j+1..k1] 
      if (b[h1..j-1] smaller than b[j+1..k1])  
         {  QS(b, h, j-1);  h1=  j+1; } 
      else {QS(b, j+1, k1);  k1=  j-1; } 
   } 
} 

 1   2   3   7   6   8   9   4   8   5   7   9 
0          j                                           11             

h  0    k  11    

h1  0    k1  11    

The left partition is 
smaller, so it is sorted 
recursively by this call. 
We have changed the 
partition to the result.  

Call  QS(b, 0, 11); 
6 

public static void QS(int[] b, int h, int k) { 
  int h1= h; int k1= k; 
  // inv; b[h..k] is sorted if b[h1..k1] is 
  while (size of b[h1..k1] > 1) { 
      int j= partition(b, h1, k1); 
      // b[h1..j-1] <= b[j] <= b[j+1..k1] 
      if (b[h1..j-1] smaller than b[j+1..k1])  
         {  QS(b, h, j-1);  h1=  j+1; } 
      else {QS(b, j+1, k1);  k1=  j-1; } 
   } 
} 

 1   2   3   7   6   8   9   4   8   5   7   9 
0          j                                           11             

h  0    k  11    

h1  3    k1  11    

The assignment to h1 is 
done. 

j  2    

Do you see that the inv is 
true again? If the underlined 
partition is sorted, then so is 
b[h..k]. Each iteration of the 
loop keeps inv true and 
reduces size of b[h1..k1]. 



3/11/14 

2 

Divide & Conquer! 
7 

It often pays to 
¤ Break the problem into smaller subproblems, 
¤ Solve the subproblems separately, and then 
¤ Assemble a final solution 

This technique is called divide-and-conquer 
¤ Caveat: It won’t help unless the partitioning and assembly 

processes are inexpensive 

We did this in Quicksort: Partition the array and then sort the 
two partitions. 

MergeSort 
8 

Quintessential divide-and-conquer algorithm: 

Divide array into equal parts, sort each part (recursively), 
then merge 

Questions: 
¤ Q1: How do we divide array into two equal parts? 
   A1: Find middle index: b.length/2 

¤ Q2: How do we sort the parts? 
   A2: Call MergeSort recursively! 

¤ Q3: How do we merge the sorted subarrays? 
   A3: It takes linear time. 

Merging Sorted Arrays A and B into C  
9 

C: merged array 

Array B 

Array A 

k 

i 

j 
1 3 4 4 6 7 

4 7 7 8 9 

1 3 4 6 8  

A[0..i-1]  and B[0..j-1] 
have been copied into 
C[0..k-1]. 

C[0..k-1] is sorted. 

Next, put a[i] in c[k], 
because a[i] < b[j]. 

Then increase k and i. 

Picture shows situation after copying{4, 7} 
from A and {1, 3, 4, 6} from B into C 

Merging Sorted Arrays A and B into C  
10 

¨  Create array C of size: size of A + size of B 
¨  i= 0;  j= 0;  k= 0;    // initially, nothing copied 

¨  Copy smaller of A[i] and B[j] into C[k] 

¨  Increment i or j,  whichever one was used, and k 

¨  When either A or B becomes empty, copy remaining 
elements from the other array (B or A, respectively) into C 

This tells what has been done so far: 

A[0..i-1]  and B[0..j-1] have been placed in C[0..k-1]. 

C[0..k-1] is sorted. 

                                  MergeSort 
11 

/** Sort b[h..k] */ 
public static void MS 
         (int[] b, int h, int k) { 
    if (k – h <= 1) return; 
    MS(b, h, (h+k)/2);  
    MS(b, (h+k)/2 + 1, k); 
    merge(b, h, (h+k)/2, k); 
} 

merge 2 sorted arrays 

QuickSort versus MergeSort 
12 

/** Sort b[h..k] */ 
public static void QS 
         (int[] b, int h, int k) { 
    if (k – h <= 1) return; 
    int j=  partition(b, h, k); 
    QS(b, h, j-1);  
    QS(b, j+1, k); 
} 

/** Sort b[h..k] */ 
public static void MS 
         (int[] b, int h, int k) { 
    if (k – h <= 1) return; 
    MS(b, h, (h+k)/2);  
    MS(b, (h+k)/2 + 1, k); 
    merge(b, h, (h+k)/2, k); 
} 

One processes the array then recurses. 
One recurses then processes the array.  

merge 2 sorted arrays 



3/11/14 

3 

MergeSort Analysis 
13 

Outline 
¤ Split array into two halves 
¤ Recursively sort each half 
¤ Merge two halves 

Merge: combine two sorted 
arrays into one sorted array: 

¤  Time: O(n) where n is the 
total size of the two arrays 

Runtime recurrence 
T(n): time to sort array of size n    
   T(1) = 1 
   T(n) = 2T(n/2) + O(n) 

Can show by induction that  
   T(n) is O(n log n) 

Alternatively, can see that  
T(n) is O(n log n) by looking at 
tree of recursive calls 

MergeSort Notes 
14 

¨  Asymptotic complexity: O(n log n) 
Much faster than O(n2) 

¨  Disadvantage 
¤ Need extra storage for temporary arrays 
¤  In practice, can be a disadvantage, even though MergeSort 

is asymptotically optimal for sorting 
¤ Can do MergeSort in place, but very tricky (and slows 

execution significantly) 

¨  Good sorting algorithm that does not use so much 
extra storage?  Yes: QuickSort —when done properly, uses 
log n space. 

QuickSort Analysis 
15 

Runtime analysis (worst-case) 
¤  Partition can produce this: 
¤  Runtime recurrence:  T(n) = T(n–1) + n 
¤ Can be solved to show worst-case T(n) is O(n2) 
¤  Space can be O(n) —max depth of recursion 

Runtime analysis (expected-case) 
¤ More complex recurrence 
¤ Can be solved to show expected T(n) is O(n log n) 

Improve constant factor by avoiding QuickSort on small sets 
¤ Use InsertionSort (for example) for sets of size, say, ≤ 9 
¤ Definition of small depends on language, machine, etc. 

p > p 

Sorting Algorithm Summary 
16 

We discussed 
¤  InsertionSort 
¤  SelectionSort  
¤  MergeSort 
¤  QuickSort 

Other sorting algorithms 
¤  HeapSort (will revisit) 
¤  ShellSort (in text) 
¤  BubbleSort (nice name) 
¤  RadixSort 
¤  BinSort 
¤  CountingSort 

Why so many?  Do computer 
scientists have some kind of sorting 
fetish or what? 
Stable sorts: Ins, Sel, Mer 
Worst-case O(n log n): Mer, Hea 
Expected O(n log n): Mer, Hea, Qui 
Best for nearly-sorted sets: Ins 
No extra space: Ins, Sel, Hea 
Fastest in practice: Qui 
Least data movement: Sel 

A sorting algorithm is stable if: equal values stay in same order: 
b[i] = b[j] and i < j  means that b[i] will precede b[j] in result 

Lower Bound for Comparison Sorting 
17 

Goal: Determine minimum 
time required to sort n items 

Note: we want worst-case, 
not best-case time 
¤ Best-case doesn’t tell us 

much. E.g. Insertion Sort 
takes O(n) time on already-
sorted input 

¤ Want to know worst-case 
time for best possible 
algorithm 

� How can we prove anything 
about the best possible 
algorithm? 

§ Want to find characteristics that 
are common to all sorting 
algorithms 

§ Limit attention to comparison-
based algorithms and try to 
count number of comparisons 

Comparison Trees 
18 

¨  Comparison-based algorithms make 
decisions based on comparison of 
data elements 

¨  Gives a comparison tree 
¨  If algorithm fails to terminate for 

some input, comparison tree is infinite 
¨  Height of comparison tree represents 

worst-case number of comparisons for 
that algorithm 

¨  Can show: Any correct comparison-
based algorithm must make at least 
n log n comparisons in the worst case 

a[i] < a[j] 
yes no 



3/11/14 

4 

Lower Bound for Comparison Sorting 
19 

¨  Say we have a correct comparison-based algorithm 

¨  Suppose we want to sort the elements in an array b[] 

¨  Assume the elements of b[] are distinct 

¨  Any permutation of the elements is initially possible 

¨  When done, b[] is sorted 

¨  But the algorithm could not have taken the same path in 
the comparison tree on different input permutations 

Lower Bound for Comparison Sorting 
20 

How many input permutations are possible?  n! ~ 2n log n 

For a comparison-based sorting algorithm to be correct, it 
must have at least that many leaves in its comparison tree  

To have at least n! ~ 2n log n leaves, it must have height at 
least n log n (since it is only binary branching, the number 
of nodes at most doubles at every depth) 

Therefore its longest path must be of length at least  
n log n, and that it its worst-case running time 

Interface java.lang.Comparable<T> 
21 

public int compareTo(T x); 
§ Return a negative, zero, or positive value 
w negative if this is before x 
w 0 if this.equals(x) 
w positive if this is after x 

Many classes implement Comparable 
§ String, Double, Integer, Character, Date, … 
§ Class implements Comparable? Its method compareTo is 
considered to define that class’s natural ordering 

Comparison-based sorting methods should work with Comparable 
for maximum generality 


