

```
Execution of logarithmic-space Quicksort
/** Sort b[h..k]. */
\textbf{public static void } QS(\textbf{int}[] \ b, \ \textbf{int} \ h, \ \textbf{int} \ k) \ \{
  int h1 = h; int k1 = k;
                                                 Last lecture ended with
  // inv; b[h..k] is sorted if b[h1..k1] is
   while (size of b[h1..k1] > 1) {
                                                           presenting this
       int j= partition(b, h1, k1);
                                                algorithm. There was no
       // b[h1..j-1] \le b[j] \le b[j+1..k1]
                                                   time to explain it. We
       if (b[h1..j-1] smaller than b[j+1..k1])
                                                     now show how it is
          { QS(b, h, j-1); h1= j+1; }
                                                     executed in order to
                                                        illustrate how the
          {QS(b, j+1, k1); k1= j-1; }
                                                  invariant is maintained
```

```
Call QS(b, 0, 11);
public static void QS(int[] b, int h, int k) {
 int h1 = h; int k1 = k;
                                          Initially, h is 0 and k is 11.
 // inv; b[h..k] is sorted if b[h1..k1] is
                                          The initialization stores 0
 while (size of b[h1..k1] > 1) {
                                          and 11 in h1 and k1
   int j= partition(b, h1, k1);
                                          The invariant is true since
   // b[h1..j-1] \le b[j] \le b[j+1..k1]
                                          h = h1 and k = k1.
   if (b[h1..j-1] smaller than b[j+1..k1])
     { QS(b, h, j-1); h1= j+1; }
   else \{QS(b, j+1, k1); k1=j-1; \}
                                               h 0
                                                            k 11
                                     11
                                                            k1 11
 3 4 8 7 6 8 9 1 2 5 7 9
```

```
Call QS(b, 0, 11);
public static void QS(int[] b, int h, int k) {
 int h1 = h; int k1 = k;
                                              The assignment to i
 // inv; b[h..k] is sorted if b[h1..k1] is
                                              partitions b, making it
 while (size of b[h1..k1] > 1) {
   int j= partition(b, h1, k1);
                                              look like what is below.
                                              The two partitions are
   // b[h1..j-1] \le b[j] \le b[j+1..k1]
   \textbf{if} \ (b[h1..j\text{-}1] \ smaller \ than \ b[j\text{+}1..k1])
                                              underlined
     { QS(b, h, j-1); h1= j+1; }
   else {QS(b, j+1, k1); k1= j-1; }
                                                    0
                                                               k 11
                                                 h1 \mid 0
                                                               k1 11
 2 1 3 7 6 8 9 4 8 5 7 9
```

```
Call QS(b, 0, 11);
public static void QS(int[] b, int h, int k) {
 int h1 = h; int k1 = k;
 // inv; b[h..k] is sorted if b[h1..k1] is
                                             The left partition is
 while (size of b[h1..k1] > 1) {
                                             smaller, so it is sorted
   int i= partition(b, h1, k1):
                                             recursively by this call.
   // b[h1..j-1] \le b[j] \le b[j+1..k1]
                                             We have changed the
   if (b[h1..j-1] smaller than b[j+1..k1])
                                             partition to the result.
     { QS(b, h, j-1); 4h1 = j+1; }
   else \{QS(b, j+1, k1); k1=j-1; \}
                                                            k 11
                                                            k1 11
                                               h1 0
 1 2 3 7 6 8 9 4 8 5 7 9
```

```
Call QS(b, 0, 11);
                                         The assignment to h1 is
public static void QS(int[] b, int h, int k) { done.
 int h1 = h; int k1 = k;
                                        Do you see that the inv is
 // inv; b[h..k] is sorted if b[h1..k1] is
 while (size of b[h1..k1] > 1) {
                                        true again? If the underlined
                                        partition is sorted, then so is
   int i= partition(b, h1, k1):
                                        b[h..k]. Each iteration of the
   // b[h1..j-1] \le b[j] \le b[j+1..k]/
   if (b[h1..j-1] smaller than b[j+1..k1])
                                       loop keeps inv true and
     { QS(b, h, j-1); h1= j+1; ^{k}
                                        reduces size of b[h1..k1].
   else {QS(b, j+1, k1); k1= j-1; }
                                             k 11
                                                           k1 11
 1 2 3 7 6 8 9 4 8 5 7 9
```

Divide & Conquer! It often pays to Break the problem into smaller subproblems, Solve the subproblems separately, and then Assemble a final solution This technique is called divide-and-conquer Caveat: It won't help unless the partitioning and assembly processes are inexpensive We did this in Quicksort: Partition the array and then sort the two partitions.

Quintessential divide-and-conquer algorithm: Divide array into equal parts, sort each part (recursively), then merge Questions: Q1: How do we divide array into two equal parts? A1: Find middle index: b.length/2 Q2: How do we sort the parts? A2: Call MergeSort recursively! Q3: How do we merge the sorted subarrays? A3: It takes linear time.


```
Merging Sorted Arrays A and B into C

Create array C of size: size of A + size of B

i = 0; j = 0; k = 0; // initially, nothing copied

Copy smaller of A[i] and B[j] into C[k]

Increment i or j, whichever one was used, and k

When either A or B becomes empty, copy remaining elements from the other array (B or A, respectively) into C

This tells what has been done so far:

A[0..i-1] and B[0..j-1] have been placed in C[0..k-1].

C[0..k-1] is sorted.
```

```
QuickSort versus MergeSort
                                /** Sort b[h..k] */
/** Sort b[h..k] */
public static void QS
                                public static void MS
     (int[] b, int h, int k) {
                                     (int[] b, int h, int k) {
  if (k - h \le 1) return;
                                  if (k-h \le 1) return;
  int j= partition(b, h, k);
                                  MS(b, h, (h+k)/2);
  QS(b, h, j-1);
                                  MS(b, (h+k)/2 + 1, k);
  QS(b, j+1, k);
                                  merge(b, h, (h+k)/2, k);
One processes the array then recurses.
                                          merge 2 sorted arrays
One recurses then processes the array.
```

MergeSort Analysis

Outline

- ■Split array into two halves
 ■Recursively sort each half
- ■Merge two halves

Merge: combine two sorted arrays into one sorted array:

■ Time: O(n) where n is the total size of the two arrays

Runtime recurrence

- T(n): time to sort array of size n T(1) = 1T(n) = 2T(n/2) + O(n)
- Can show by induction that T(n) is O(n log n)

Alternatively, can see that T(n) is O(n log n) by looking at tree of recursive calls

MergeSort Notes

□ Asymptotic complexity: O(n log n)

Much faster than O(n²)

- Disadvantage
 - Need extra storage for temporary arrays
 - □ In practice, can be a disadvantage, even though MergeSort is asymptotically optimal for sorting
 - Can do MergeSort in place, but very tricky (and slows execution significantly)
- Good sorting algorithm that does not use so much extra storage? Yes: QuickSort —when done properly, uses log n space.

QuickSort Analysis

Runtime analysis (worst-case)

- □ Partition can produce this: □
- Runtime recurrence: T(n) = T(n-1) + n
- □ Can be solved to show worst-case T(n) is O(n²)
- □ Space can be O(n) —max depth of recursion

Runtime analysis (expected-case)

- More complex recurrence
- □ Can be solved to show expected T(n) is O(n log n)

Improve constant factor by avoiding QuickSort on small sets

- Use InsertionSort (for example) for sets of size, say, ≤ 9
- □ Definition of small depends on language, machine, etc.

Sorting Algorithm Summary

We discussed

- □ InsertionSort
- □ SelectionSort
- MergeSort
- QuickSort

Other sorting algorithms

- HeapSort (will revisit)
- ShellSort (in text)BubbleSort (nice name)
- RadixSort
- □ BinSort
- CountingSort

- Why so many? Do computer
- scientists have some kind of sorting
- fetish or what?
- Stable sorts: Ins, Sel, Mer
- Worst-case O(n log n): Mer, Hea
- Expected O(n log n): **Mer, Hea, Qui** Best for nearly-sorted sets: **Ins**
- No extra space: Ins, Sel, Hea
- No extra space: Ins, Sel, Hea
- Fastest in practice: Qui
- Least data movement: Sel

A sorting algorithm is stable if: equal values stay in same order: b[i] = b[j] and i < j means that b[i] will precede b[j] in result

Lower Bound for Comparison Sorting

Goal: Determine minimum time required to sort n items Note: we want worst-case, not best-case time

- Best-case doesn't tell us much. E.g. Insertion Sort takes O(n) time on alreadysorted input
- Want to know worst-case time for best possible algorithm
- How can we prove anything about the *best possible* algorithm?
- Want to find characteristics that are common to *all* sorting algorithms
- Limit attention to comparisonbased algorithms and try to count number of comparisons

Comparison Trees

- Comparison-based algorithms make decisions based on comparison of data elements
- □ Gives a comparison tree
- ☐ If algorithm fails to terminate for some input, comparison tree is infinite
- Height of comparison tree represents worst-case number of comparisons for that algorithm
- Can show: Any correct comparisonbased algorithm must make at least n log n comparisons in the worst case

Lower Bound for Comparison Sorting

- Say we have a correct comparison-based algorithm
- Suppose we want to sort the elements in an array b[]
- □ Assume the elements of b[] are distinct
- Any permutation of the elements is initially possible
- □ When done, b[] is sorted
- □ But the algorithm could not have taken the same path in the comparison tree on different input permutations

Lower Bound for Comparison Sorting

How many input permutations are possible? $n! \sim 2^{n \log n}$

For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree

To have at least $n! \sim 2^{n \log n}$ leaves, it must have height at least $n \log n$ (since it is only binary branching, the number of nodes at most doubles at every depth)

Therefore its longest path must be of length at least n log n, and that it its worst-case running time

Interface java.lang.Comparable<T>

public int compareTo(T x);

- ■Return a negative, zero, or positive value
- •negative if **this** is before **x**
- •0 if this.equals(x)
- •positive if this is after x

Many classes implement Comparable

- *String, Double, Integer, Character, Date, ...
- *Class implements Comparable? Its method compareTo is considered to define that class's *natural ordering*

Comparison-based sorting methods should work with ${\tt Comparable}$ for maximum generality