

Call QS(b, 0, 11);

public static void $\mathrm{QS}($ int [] b , int h , int k$)$ \{
int $\mathrm{hl}=\mathrm{h}$; int $\mathrm{kl}=\mathrm{k}$;
$/ /$ inv; $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ is sorted if $\mathrm{b}[\mathrm{h} 1 . . \mathrm{k} 1]$ is
while $($ size of $\mathrm{b}[\mathrm{h} 1 . . \mathrm{k} 1]>1)\{$
int $\mathrm{j}=$ partition(b, h1, k1);
$/ / \mathrm{b}[\mathrm{h} 1 . \mathrm{j}-1]<=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+1 . . \mathrm{k} 1]$
if $(\mathrm{b}[\mathrm{h} 1 . \mathrm{j}-1]$ smaller than $\mathrm{b}[\mathrm{j}+1 . . \mathrm{k} 1])$
\{ QS(b, h, j-1); h1= j+1; \}
else $\{\mathrm{QS}(\mathrm{b}, \mathrm{j}+1, \mathrm{k} 1) ; \mathrm{kl}=\mathrm{j}-1 ;\}$
, \}
\}

0	11										
3	4	8	7	6	8	9	1	2	5	7	9

Initially, h is 0 and k is 11 .
The initialization stores 0 and 11 in h 1 and k 1 .
The invariant is true since $\mathrm{h}=\mathrm{h} 1$ and $\mathrm{k}=\mathrm{k} 1$.

Execution of logarithmic-space Quicksort

/** Sort b[h..k]. */
public static void $\mathrm{QS}($ int [] b , int h , int k$)$ \{ int $\mathrm{h} 1=\mathrm{h}$; int $\mathrm{kl}=\mathrm{k}$;
// inv; b[h..k] is sorted if b[h1..kl] is Last lecture ended with while (size of b[h1...k1] > 1) \{ int $\mathrm{j}=\operatorname{partition}(\mathrm{b}, \mathrm{h} 1, \mathrm{k} 1)$;
$/ / \mathrm{b}[\mathrm{h} 1 . . \mathrm{j}-1]<=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+1 . . \mathrm{k} 1]$
if (b[h1..j-1] smaller than $\mathrm{b}[\mathrm{j}+1 . . \mathrm{k} 1])$
$\{Q S(b, h, j-1) ; h 1=j+1 ;\}$
else
$\{\mathrm{QS}(\mathrm{b}, \mathrm{j}+1, \mathrm{k} 1) ; \mathrm{k} 1=\mathrm{j}-1 ;\}$
\}
\}

Call QS(b, 0, 11);
public static void $\mathrm{QS}($ int [] b , int h , int k$)\{$ int $\mathrm{h} 1=\mathrm{h}$; int $\mathrm{kl}=\mathrm{k}$;
// inv; $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ is sorted if $\mathrm{b}[\mathrm{h} 1 . . \mathrm{k} 1]$ is The assignment to j while (size of b[h1..k1]>1) $\{$
\qquad
$/ / \mathrm{b}[\mathrm{h} 1 . \mathrm{j}-1]<=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+1 . . \mathrm{k} 1]$
if $(b[h 1 . . j-1]$ smaller than $b[j+1 . . \mathrm{k} 1])$
\{ QS(b, h, j-1); h1= j+1; \}
else $\{\mathrm{QS}(\mathrm{b}, \mathrm{j}+1, \mathrm{k} 1) ; \mathrm{k} 1=\mathrm{j}-1 ;\}$
\}
\}

partitions b, making it look like what is below. The two partitions are underlined
j 2
h 0
h1 0

k	11
k1	11

Call QS(b, 0, 11);

Call QS(b, 0, 11);

Divide \& Conquer!

It often pays to
 \square Break the problem into smaller subproblems,
 \square Solve the subproblems separately, and then

\square Assemble a final solution
This technique is called divide-and-conquer
\square Caveat: It won' \dagger help unless the partitioning and assembly processes are inexpensive

We did this in Quicksort: Partition the array and then sort the two partitions.

MergeSort

Quintessential divide-and-conquer algorithm:
Divide array into equal parts, sort each part (recursively), then merge
Questions:
\square Q1: How do we divide array into two equal parts?
A1: Find middle index: b.length/2

- Q2: How do we sort the parts?

A2: Call MergeSort recursively!
\square Q3: How do we merge the sorted subarrays?
A3: It takes linear time.

Merging Sorted Arrays A and B into C

\square Create array C of size: size of $A+$ size of B
$\mathrm{i}=0$; $\mathrm{i}=0$; $\mathrm{k}=0$; // initially, nothing copied
Copy smaller of $A[i]$ and $B[i]$ into $C[k]$
Increment i or i , whichever one was used, and k
When either A or B becomes empty, copy remaining elements from the other array (B or A, respectively) into C

This tells what has been done so far:
$\mathrm{A}[0 . . \mathrm{i}-1]$ and $\mathrm{B}[0 . . \mathrm{j}-1]$ have been placed in $\mathrm{C}[0 . . \mathrm{k}-1]$.
$\mathrm{C}[0 . . \mathrm{k}-1]$ is sorted.

QuickSort versus MergeSort

$\left.\begin{array}{l}\text { /** Sort } \mathrm{b}[\mathrm{h} . . \mathrm{k}] \text { */ } \\ \text { public static void QS } \\ \quad(\text { int }[] \mathrm{b}, \text { int } \mathrm{h}, \text { int } \mathrm{k})\{ \\ \text { if }(\mathrm{k}-\mathrm{h}<=1) \text { return; } \\ \text { int } \mathrm{j}=\text { partition(} \mathrm{b}, \mathrm{h}, \mathrm{k}) ; \\ \mathrm{QS}(\mathrm{b}, \mathrm{h}, \mathrm{j}-1) ; \\ \mathrm{QS}(\mathrm{b}, \mathrm{j}+1, \mathrm{k}) ;\end{array}\right\}$

/** Sort b[h..k] */

 public static void MS (int[] b, int h, int k) \{if $(\mathrm{k}-\mathrm{h}<=1)$ return;
MS(b, h, (h+k)/2);
$\operatorname{MS}(\mathrm{b},(\mathrm{h}+\mathrm{k}) / 2+1, \mathrm{k})$;
merge(b, h, (h+k)/2, k);
\}

One processes the array then recurses. One recurses then processes the array.
merge 2 sorted arrays

MergeSort Analysis	
Outline םSplit array into two halves \square Recursively sort each half -Merge two halves Merge: combine two sorted arrays into one sorted array: - Time: $\mathrm{O}(\mathrm{n})$ where n is the total size of the two arrays	Runtime recurrence $\mathrm{T}(\mathrm{n})$: time to sort array of size n $\begin{aligned} & T(1)=1 \\ & T(n)=2 T(n / 2)+O(n) \end{aligned}$ Can show by induction that $T(n)$ is $O(n \log n)$ Alternatively, can see that $T(n)$ is $O(n \log n)$ by looking at tree of recursive calls

QuickSort Analysis

Runtime analysis (worst-case)
\square Partition can produce this: $\quad \mathrm{p}$ — $\quad \mathrm{p}$
\square Runtime recurrence: $T(n)=T(n-1)+n$

- Can be solved to show worst-case $T(n)$ is $O\left(n^{2}\right)$
\square Space can be $O(n)$-max depth of recursion
Runtime analysis (expected-case)
- More complex recurrence
- Can be solved to show expected $T(n)$ is $O(n \log n)$

Improve constant factor by avoiding QuickSort on small sets \square Use InsertionSort (for example) for sets of size, say, ≤ 9 \square Definition of small depends on language, machine, etc.

Lower Bound for Comparison Sorting

MergeSort Notes

\square Asymptotic complexity: $O(n \log n)$
Much faster than $\mathrm{O}\left(\mathrm{n}^{2}\right)$
\square Disadvantage

- Need extra storage for temporary arrays
- In practice, can be a disadvantage, even though MergeSort is asymptotically optimal for sorting
- Can do MergeSort in place, but very tricky (and slows execution significantly)
\square Good sorting algorithm that does not use so much extra storage? Yes: QuickSort -when done properly, uses $\log n$ space.

Sorting Algorithm Summary

We discussed	Why so many? Do computer
\square InsertionSort	scientists have some kind of sorting
\square SelectionSort	fetish or what?
\square MergeSort	Stable sorts: Ins, Sel, Mer
\square QuickSort	Worst-case O(n $\log n)$: Mer, Hea
Other sorting algorithms	Expected O(n log n): Mer, Hea, Qui
\square HeapSort (will revisit)	Best for nearly-sorted sets: Ins
\square ShellSort (in text)	No extra space: Ins, Sel, Hea
\square BubbleSort (nice name)	Fastest in practice: Qui
\square RadixSort	Least data movement: Sel
\square CountingSort	
A sorting algorithm is stable if: equal values stay in same order: $\mathrm{b}[\mathrm{i}]=\mathrm{b}[\mathrm{j}]$ and $\mathrm{i}<\mathrm{j}$ means that b[i] will precede b[j] in result	

Comparison Trees

\square Comparison-based algorithms make decisions based on comparison of data elements

- Gives a comparison tree

If algorithm fails to terminate for some input, comparison tree is infinite
\square Height of comparison tree represents worst-case number of comparisons for that algorithm
\square Can show: Any correct comparisonbased algorithm must make at least $\mathrm{n} \log \mathrm{n}$ comparisons in the worst case

Lower Bound for Comparison Sorting
\square Say we have a correct comparison-based algorithm
\square Suppose we want to sort the elements in an array b[]
\square Assume the elements of b[] are distinct
\square Any permutation of the elements is initially possible
\square When done, b[] is sorted
\square But the algorithm could not have taken the same path in
the comparison tree on different input permutations

Lower Bound for Comparison Sorting

20 LOwer

How many input permutations are possible? $\mathrm{n}!\sim 2^{\mathrm{n} \log \mathrm{n}}$
For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree

To have at least $\mathrm{n}!\sim 2^{\mathrm{n} \log \mathrm{n}}$ leaves, it must have height at least $\mathrm{n} \log \mathrm{n}$ (since it is only binary branching, the number of nodes at most doubles at every depth)

Therefore its longest path must be of length at least $\mathrm{n} \log \mathrm{n}$, and that it its worst-case running time

Interface java.lang.Comparable $<\mathrm{T}>$
public int compareTo(T x);
-Return a negative, zero, or positive value

- negative if this is before \mathbf{x}
- 0 if this.equals(\mathbf{x})
\bullet positive if this is after \mathbf{x}
Many classes implement Comparable
-String, Double, Integer, Character, Date, ...
-Class implements Comparable? Its method compareTo is considered to define that class's natural ordering

Comparison-based sorting methods should work with Comparable
for maximum generality

