

## What to do in each iteration?

inv:


b.length


Push 3 down to its shortest position in $\mathrm{b}[0 . \mathrm{i}]$, then increase i

Will take time proportional to the number of swaps needed

## InsertionSort

$\left.\begin{array}{l}\text { // sort } \mathrm{b}[] \text {, an array of int } \\ / / \text { inv: } \mathrm{b}[0 . . \mathrm{i}-1] \text { is sorted } \\ \text { for }(\text { int } \mathrm{i}=1 ; \mathrm{i}<\mathrm{b} . \text { length; } \mathrm{i}=\mathrm{i}+1) \text { \{ } \\ \text { Push } \mathrm{b}[\mathrm{i}] \text { down to its sorted position } \\ \text { in } \mathrm{b}[0 . \mathrm{i}]\end{array}\right\}$
Pushing $\mathrm{b}[\mathrm{i}]$ down can take i swaps.
Worst case takes

$\quad$| $1+2+3+\ldots \mathrm{n}-1=(\mathrm{n}-1) * \mathrm{n} / 2$ |
| :--- |
| Swaps. |

- Worst-case: O( $\mathrm{n}^{2}$ ) (reverse-sorted input)
- Best-case: O(n) (sorted input)
- Expected case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Pushing $\mathrm{b}[\mathrm{i}]$ down can take i swaps. Worst case takes

$$
1+2+3+\ldots \mathrm{n}-1=(\mathrm{n}-1)^{*} \mathrm{n} / 2
$$

Swaps.
Let $\mathrm{n}=\mathrm{b}$.length


## InsertionSort

| ```// sort b[], an array of int // inv: b[0..i-1] is sorted for (int i=1; i < b.length; i= i+1) { Push b[i] down to its sorted position in b[0..i] }``` | Note English statement in body. Abstraction. Says what to do, not how. |
| :---: | :---: |
| Many people sort cards this way Works well when input is nearly sorted | This is the best way to present it. Later, show how to implement that with a loop |

## SelectionSort

| 0 |  |  | b.length |
| :---: | :---: | :---: | :---: |
| pre: b | ? |  | b.length |
|  | 0 |  |  |
| post: b |  |  |  |
|  |  |  | b.lengthAdditional |
| inv: b | sorted, $<=\mathrm{b}$ [i..] | >= b[0..i-1] |  |
| Keep invariant true while making progress? $0$ <br> i |  |  | invariant |
|  |  |  | b.length |
| e.g.: b | 23456 | 99786 |  |
| Increasing $i$ by 1 keeps inv true only if $b[i]$ is min of $b[i .$. |  |  |  |



Partition algorithm



## Partition algorithm

| h h+1 |  |  |  |  | k |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | b | ? |  |  |  |
|  | h |  | x |  | k |
| post: | b | $<=\mathrm{x}$ | x | >= x |  |

Combine pre and post to get an invariant


QuickSort procedure
/** Sort b[h..k]. */
public static void $\mathrm{QS}($ int [] b , int h , int k$)$ \{
if (b[h..k] has $<2$ elements) return; Base case int $\mathrm{j}=\operatorname{partition}(\mathrm{b}, \mathrm{h}, \mathrm{k})$;
// We know $b[h . . j-1]<=b[j]<=b[j+1 . . \mathrm{k}]$
Sort b[h..j-1] and b[j+1..k]
\}
Function does the partition algorithm and returns position $j$ of pivot

| QuickSort procedure |  |
| :---: | :---: |
|  |  |
|  |  |



| Partition algorithm |  |
| :---: | :---: |
| Key issue: <br> How to choose a pivot? | Choosing pivot <br> - Ideal pivot: the median, since it splits array in half <br> But computing median of unsorted array is $\mathrm{O}(\mathrm{n})$, quite complicated <br> Popular heuristics: Use <br> - first array value (not good) <br> - middle array value <br> - median of first, middle, last, values GOOD! <br> -Choose a random element |

Average time for Quicksort: $\mathrm{n} \log \mathrm{n}$. Difficult calculation

Worst case quicksort: pivot always smallest value


## QuickSort

Quicksort developed by Sir Tony Hoare (he was knighted by the Queen of England for his contributions to education and CS ).
Will be 80 in April.
Developed Quicksort in 1958. But he could not explain it to his colleague, so he gave up on it.


Later, he saw a draft of the new language Algol 68 (which became Algol 60). It had recursive procedures. First time in a programming language. "Ah!," he said. "I know how to write it better now." 15 minutes later, his colleague also understood it.

| Quicksort with logarithmic space |
| :--- |
| Problem is that if the pivat value is always the smallest (or always |
| the largest), the depth of recursion is the size of the array to sort. |
| Eliminate this problem by doing some of it iteratively and some |
| recursively |

QuickSort with logarithmic space

```
/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
    int h1= h; int k1= k;
    // invariant b[h..k] is sorted if b[h1..k1] is sorted
    while (b[h1..k1] has more than 1 element) {
        Reduce the size of b[h1..k1], keeping inv true
    }
}
```

