
3/5/14

1

BINARY SEARCH AND
LOOP INVARIANTS

Lecture 12A
CS2110 – Spring 2014

Develop binary search in sorted array b for v

2

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

 2 2 4 4 4 4 7 9 9 9 9 pre: b
0 4 5 6 7 b.length

Example:

If v is 4, 5, or 6, h is 5 If v is 7 or 8, h is 6

If v in b, h is index of rightmost occurrence of v.
If v not in b, h is index before where it belongs.

Develop binary search in sorted array b for v

3

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

Better than Binary search in last lecture because it
(1)  Finds not a random occurrence of v but the rightmost one.

Useful in some situations
(2)  If v is not in b, it gives useful information: it belongs

between b[h] and b[h+1]
(3) Works also when array is empty!

Develop binary search in sorted array b for v

4

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

Get loop invariant by combining pre- and post-
conditions, adding variable t to mark the other boundary

inv: b
0 h t b.length
 <= v ? > v

Store a value in h to make this true:

How does it start (what makes the invariant true)?

5

 ? pre: b
0 b.length

inv: b
0 h t b.length
 <= v ? > v

Make first and last partitions empty:

 h= -1; t= b.length;

When does it end (when does invariant look like postcondition)?

6

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while () {

}

post: b
0 h b.length
 <= v > v

Stop when ? section
is empty. That is when
h = t-1.
Therefore, continue as
long as h != t-1.

h != t-1

3/5/14

2

How does body make progress toward termination (cut ? in half)
and keep invariant true?

7

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {

}

Let e be index of middle
value of ? Section.
Maybe we can set h or t to
e, cutting ? section in half

b
0 h e t b.length
 <= v ? > v

int e= (h+t)/2;

How does body make progress toward termination (cut ? in half)
and keep invariant true?

8

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {
 int e= (h+t)/2;

}

b
0 h e t b.length
 <= v ? ? > v

if (b[e] <= v) h= e;

If b[e] <= v, then so is every value
to its left, since the array is sorted.
Therefore, h= e; keeps the invariant
true.

b
0 h e t b.length
 <= v <= v ? > v

How does body make progress toward termination (cut ? in half)
and keep invariant true?

9

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;

}

b
0 h e t b.length
 <= v ? ? > v

else t= e;

If b[e] > v, then so is every value to
its right, since the array is sorted.
Therefore, t= e; keeps the invariant
true.

b
0 h e t b.length
 <= v ? > v > v

Loop invariants

We used the concept of a loop invariant in developing algorithms
to reverse a linked list and do a binary search on a sorted array.

10

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

inv: b
0 h t b.length
 <= v ? > v

Loop invariant: Important part of every formal system
for proving loops correct.

Extremely useful tool in developing a loop. Create (first draft of)
invariant from pre- and post-conditions, then develop the parts of
the loop from precondition, postcondition, invariant.

11

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

inv: b
0 h t b.length
 <= v ? > v

Loop invariant: Important part of every formal system
for proving loops correct.

Invariant can be written in English, mathematics, diagrams, or
mixtures of these. The important points are precision, clarity.

12

inv: b
0 h t b.length
 <= v ? > v

inv: b[0..h] <= v < b[t..b.length-1]

inv: b[0..h] <= v < b[t..]

inv: everything in b[0..h] is at most v,
 everything in b[t..] is greater than v

3/5/14

3

About notation b[h..k]. b[h..k] has k+1–h elements
13

[h..h+3] 4 elements
h h+1 h+2 h+3

[h..h+2] 3 elements

[h..h+1] 2 elements

[h..h] 1 element

[h..h-1] How many
elements?

Use the formula: 0!

Convention: The notation
b[h..k] is used only when
h <= k+1.
For example, b[0..-2] is
not allowed.

When h = k+1, b[h..k]
denotes the empty segment
starting at b[h].

Developing loop from pre, post, inv: 4 loopy questions

// pre

// inv
while (b) {
 // inv && b

 // inv
}
// inv && ! b
// post

14

2. When can it stop? Choose b so
that inv && !b implies post

1. How does it start? What
init makes invariant true? init

3. How does body make
progress toward termination?

progress
4. How do we make sure
invariant is maintained?

Ensure inv remains true;

