

TREES

Lecture 10 CS2110 - Spring2014

Readings and Homework

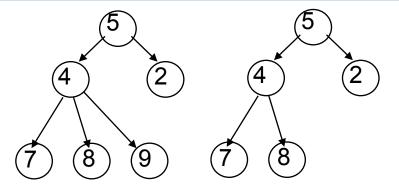
- □ Textbook, Chapter 23, 24
- Homework: A thought problem (draw pictures!)
 - Suppose you use trees to represent student schedules. For each student there would be a general tree with a root node containing student name and ID. The inner nodes in the tree represent courses, and the leaves represent the times/places where each course meets. Given two such trees, how could you determine whether and where the two students might run into one-another?

Tree Overview

Tree: recursive data structure (similar to list)

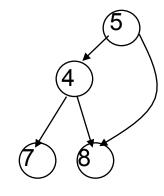
- Each node may have zero or more successors (children)
- Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root

Binary tree: tree in which each node can have at most two children: a left child and a right child

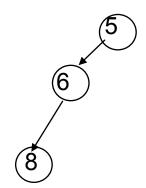


General tree

Binary tree



Not a tree

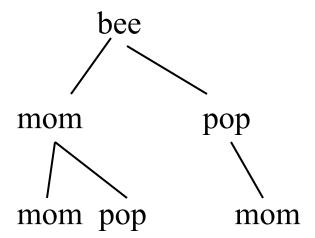


List-like tree

Binary Trees were in A1!

You have seen a binary tree in A1.

A Bee object has a mom and pop. There is an ancestral tree!



Tree Terminology

M: root of this tree

G: root of the left subtree of M

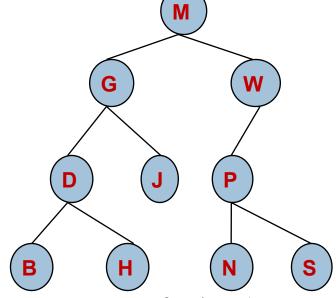
B, H, J, N, S: *leaves*

N: left child of P; S: right child

P: parent of N

M and G: ancestors of D

P, N, S: descendents of W



J is at *depth* 2 (i.e. length of path from root = no. of edges)

W is at *height* 2 (i.e. length of <u>longest</u> path to a leaf)

A collection of several trees is called a ...?

setDatum, getLeft, setLeft, etc.

Points to left subtree

class TreeNode<T> { Points to right subtree private T datum; private TreeNode<T> left, right; /** Constructor: one node tree with datum x */ public TreeNode (T x) { datum= x; } /** Constr: Tree with root value x, left tree lft, right tree rgt */ public TreeNode (T x, TreeNode<T> lft, TreeNode<T> rgt) { datum= x; left= lft; right= rgt; more methods: getDatum,

Binary versus general tree

In a binary tree each node has exactly two pointers: to the left subtree and to the right subtree

Of course one or both could be null

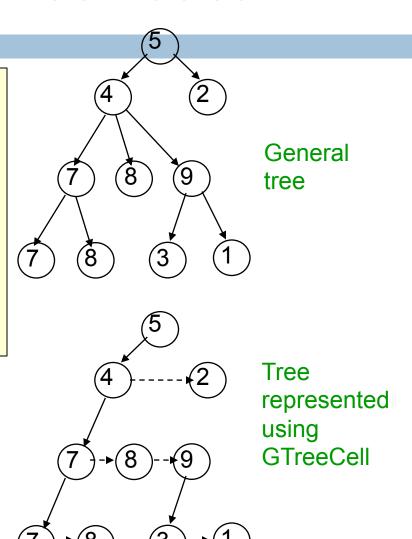
In a general tree, a node can have any number of child nodes

- Very useful in some situations ...
- ... one of which will be our assignments!

Class for General Tree nodes

class GTreeNode { 1. private Object datum; 2. private GTreeCell left; 3. private GTreeCell sibling; 4. appropriate getters/setters }

- Parent node points directly only to its leftmost child
- Leftmost child has pointer to next sibling, which points to next sibling, etc.



Applications of Trees

- Most languages (natural and computer) have a recursive, hierarchical structure
- This structure is implicit in ordinary textual representation
- Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
- ASTs are easier to optimize, generate code from, etc.
 than textual representation
- A parser converts textual representations to AST

Example

Expression grammar:

- $E \rightarrow integer$
- $E \rightarrow (E + E)$

In textual representation

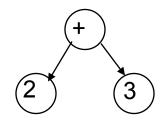
Parentheses show hierarchical structure

In tree representation

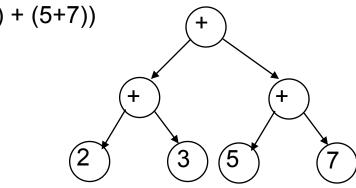
Hierarchy is explicit in the structure of the tree **Text** AST Representation

-34

(2 + 3)



((2+3) + (5+7))



Recursion on Trees

Recursive methods can be written to operate on trees in an obvious way

Base case

- empty tree
- leaf node

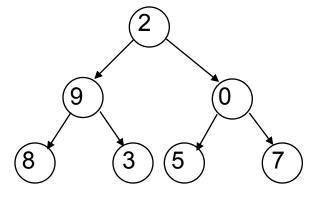
Recursive case

- solve problem on left and right subtrees
- put solutions together to get solution for full tree

Searching in a Binary Tree

```
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(Object x, TreeNode t) {
   if (t == null) return false;
   if (t.datum.equals(x)) return true;
   return treeSearch(x, t.left) || treeSearch(x, t.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

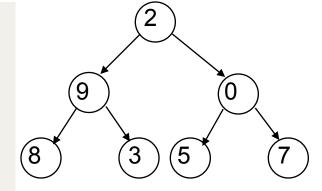


Searching in a Binary Tree

```
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(Object x, TreeNode t) {
  if (t == null) return false;
  if (t.datum.equals(x)) return true;
  return treeSearch(x, t.left) || treeSearch(x, t.right);
}
```

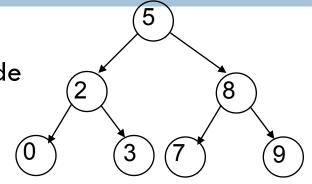
Important point about t. We can think of it either as

- (1) One node of the tree OR
- (2) The subtree that is rooted at t



Binary Search Tree (BST)

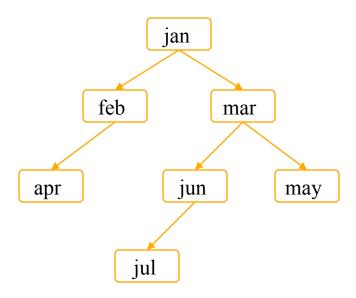
If the tree data are ordered: in every subtree,
All left descendents of node come before node
All right descendents of node come after node
Search is MUCH faster



```
/** Return true iff x if the datum in a node of tree t.
    Precondition: node is a BST */
public static boolean treeSearch (Object x, TreeNode t) {
    if (t== null) return false;
    if (t.datum.equals(x)) return true;
    if (t.datum.compareTo(x) > 0)
        return treeSearch(x, t.left);
    else return treeSearch(x, t.right);
}
```

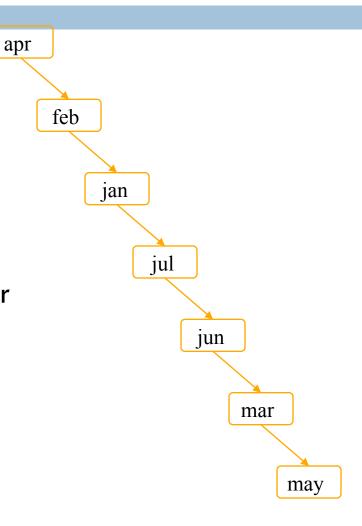
Building a BST

- To insert a new item
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree
- This can be done using either recursion or iteration
- Example
 - Tree uses alphabetical order
 - Months appear for insertion in calendar order



What Can Go Wrong?

- A BST makes searches very fast, unless...
 - Nodes are inserted in alphabetical order
 - In this case, we're basically building a linked list (with some extra wasted space for the left fields that aren't being used)
- BST works great if data arrives in random order



Printing Contents of BST

Because of ordering rules for a BST, it's easy to print the items in alphabetical order

- Recursively print left subtree
- ■Print the node
- Recursively print right subtree

```
/** Print the BST in alpha. order. */
public void show () {
 show(root);
 System.out.println();
/** Print BST t in alpha order */
private static void show(TreeNode t) {
 if (t== null) return;
 show(t.lchild);
 System.out.print(t.datum);
 show(t.rchild);
```

Tree Traversals

- "Walking" over whole tree is a tree traversal
 - Done often enough that there are standard names
 - Previous example: inorder traversal
 - Process left subtree
 - Process node
 - ■Process right subtree
- Note: Can do other processing besides printing

Other standard kinds of traversals

- Preorder traversal
 - Process node
 - Process left subtree
 - Process right subtree
- Postorder traversal
 - Process left subtree
 - Process right subtree
 - Process node
- Level-order traversal
 - Not recursive uses a queue

Some Useful Methods

```
/** Return true iff node t is a leaf */
public static boolean isLeaf(TreeNode t) {
 return t!= null && t.left == null && t.right == null;
/** Return height of node t using postorder traversal
public static int height(TreeNode t) {
 if (t== null) return -1; //empty tree
 if (isLeaf(t)) return 0;
 return 1 + Math.max(height(t.left), height(t.right));
/** Return number of nodes in t using postorder traversal */
public static int nNodes(TreeNode t) {
 if (t== null) return 0;
 return 1 + nNodes(t.left) + nNodes(t.right);
```

Useful Facts about Binary Trees

Max number of nodes at depth d: 2^d

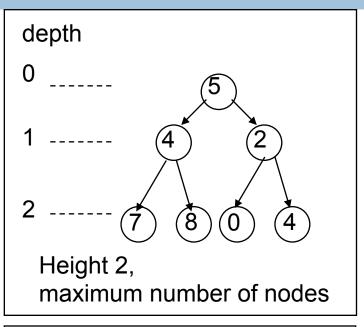
If height of tree is h

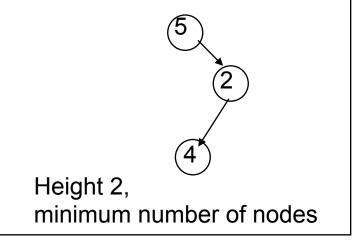
- ■min number of nodes in tree: h + 1
- Max number of nodes in tree:

$$2^{0} + \dots + 2^{h} = 2^{h+1} - 1$$

Complete binary tree

■ All levels of tree down to a certain depth are completely filled

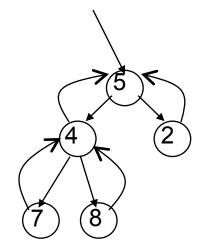




Tree with Parent Pointers

 In some applications, it is useful to have trees in which nodes can reference their parents

Analog of doubly-linked lists

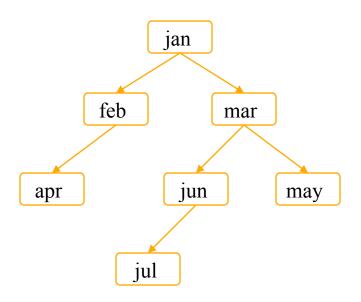


Things to Think About

What if we want to delete data from a BST?

A BST works great as long as it's balanced

How can we keep it balanced? This turns out to be hard enough to motivate us to create other kinds of trees



Suffix Trees

- Given a string s, a suffix tree for s is a tree such that
- each edge has a unique label, which is a nonnull substring of s
- any two edges out of the same node have labels beginning with different characters
- the labels along any path from the root to a leaf concatenate together to give a suffix of s
- all suffixes are represented by some path
- the leaf of the path is labeled with the index of the first character of the suffix in s
- Suffix trees can be constructed in linear time

Suffix Trees



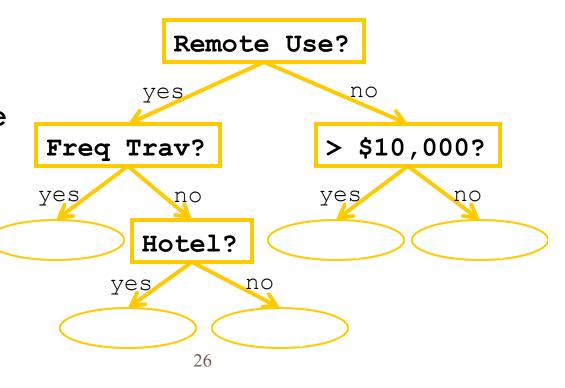
Suffix Trees

- Useful in string matching algorithms (e.g., longest common substring of 2 strings)
- Most algorithms linear time
- □ Used in genomics (human genome is ~4GB)

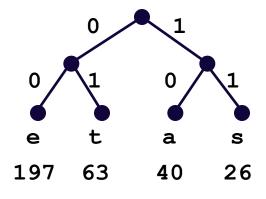
Decision Trees

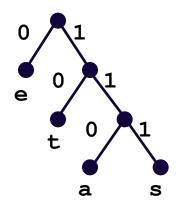
- Classification:
 - Attributes (e.g. is CC used more than 200 miles from home?)
 - Values (e.g. yes/no)
 - Follow branch of tree based on value of attribute.
 - Leaves provide decision.

- Example:
 - Should credit card transaction be denied?



Huffman Trees





Fixed length encoding 197*2 + 63*2 + 40*2 + 26*2 = 652

Huffman encoding 197*1 + 63*2 + 40*3 + 26*3 = 521

Huffman Compression of "Ulysses"

□'' □'e'	242125 139496	00100000 01100101	3	110 000
-'t'	95660	01110100	4	1010
□'a' □'o'	89651 88884	01100001 01101111	4 4	1000 0111
□'n'	78465	01101111	4	0101
□'i'	76505	01101001	4	0100
o's'	73186	01110011	4	0011
□'h'	68625	01101000	5	11111
□'r'	68320	01110010	5	11110
<u> </u>	52657	01101100	5	10111
u'u'	32942	01110101	6	111011
□'g'	26201	01100111	6	101101
□'f'	25248	01100110	6	101100
□ * . *	21361	00101110	6	011010
□'p'	20661	01110000	6	011001

28

Huffman Compression of "Ulysses"

```
-'7'
          68
              00110111 15 111010101001111
          58 00101111
15 111010101001110
19 01011000
                        16 0110000000100011
-18
           3 00100110
                        18 011000000010001010
           3 00100101
""
                        19 0110000000100010111
           2 00101011
□ <sup>1</sup> + <sup>1</sup>
                        19 0110000000100010110
□original size
                 11904320
compressed size 6822151
□42.7% compression
```

BSP Trees

- \square BSP = Binary Space Partition (not related to BST!)
- Used to render 3D images composed of polygons
- Each node n has one polygon p as data
- Left subtree of n contains all polygons on one side of p
- Right subtree of n contains all polygons on the other side of p
- Order of traversal determines occlusion (hiding)!

Tree Summary

- A tree is a recursive data structure
 - Each cell has 0 or more successors (children)
 - Each cell except the root has at exactly one predecessor (parent)
 - All cells are reachable from the root
 - A cell with no children is called a leaf
- Special case: binary tree
 - Binary tree cells have a left and a right child
 - Either or both children can be null
- Trees are useful for exposing the recursive structure of natural language and computer programs