

Tree Overview

Tree: recursive data structure (similar to list)

- Each node may have zero or more successors (children)
Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root
Binary tree: tree in which each node can have at most two children: a left child and a right child

General tree
Binary tree

Not a tree

Readings and Homework

\square Textbook, Chapter 23, 24
\square Homework: A thought problem (draw pictures!)
\square Suppose you use trees to represent student schedules. For each student there would be a general tree with a root node containing student name and ID. The inner nodes in the tree represent courses, and the leaves represent the times/places where each course meets. Given two such trees, how could you determine whether and where the two students might run into one-another?

Binary Trees were in A1!

You have seen a binary tree in A1.

A Bee object has a mom and pop. There is an ancestral tree!

Class for Binary Tree Node

Binary versus general tree

In a binary tree each node has exactly two pointers: to the left subtree and to the right subtree
\square Of course one or both could be null

In a general tree, a node can have any number of child nodes
\square Very useful in some situations ...
ㅁ... one of which will be our assignments!

Applications of Trees

\square Most languages (natural and computer) have a recursive, hierarchical structure
\square This structure is implicit in ordinary textual representation
\square Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
\square ASTs are easier to optimize, generate code from, etc. than textual representation
\square A parser converts textual representations to AST

Example

Expression grammar: $\mathrm{E} \rightarrow$ integer ㅁ $\quad \mathrm{E} \rightarrow(\mathrm{E}+\mathrm{E})$	$\begin{array}{lc} \text { Text } & \text { AST Representation } \\ -34 & -34 \end{array}$
In textual representation - Parentheses show hierarchical structure	$(2+3)$
In tree representation - Hierarchy is explicit in the structure of the tree	$((2+3)+(5+7))$

Searching in a Binary Tree

12
/** Return true iff x is the datum in a node of tree $t^{* /}$
public static boolean treeSearch(Object x, TreeNode t) \{
if $(\mathrm{t}==$ null $)$ return false;
if (t.datum.equals(x$)$) return true;
return treeSearch(x, t.left) || treeSearch(x, t.right);
\}

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

Searching in a Binary Tree

/** Return true iff x is the datum in a node of tree $\mathrm{t}^{* /}$ public static boolean treeSearch(Object x, TreeNode t) \{ if $(\mathrm{t}==$ null $)$ return false; if (t.datum.equals(x)) return true; return treeSearch(x, t.left) || treeSearch(x, t.right); \}
Important point about t. We can think of it either as
(1) One node of the tree OR
(2) The subtree that is rooted at t

Binary Search Tree (BST)
If the tree data are ordered: in every subtree, All left descendents of node come before node All right descendents of node come after node Search is MUCH faster

/** Return true iff x if the datum in a node of tree t.
Precondition: node is a BST */
public static boolean treeSearch (Object x, TreeNode t) (
if ($t==$ null) return false;
if (t.datum.equals(x)) return true;
if (t.datum. compareTo (x) >0)
return treeSearch (x, t.left);
else return treeSearch(x, t.right);

Tree Traversals

"Walking" over whole tree is a tree traversal

- Done often enough that there are standard names
- Previous example: inorder traversal
- Process left subtree
- Process node
\square Process right subtree
\square Note: Can do other processing besides printing

Other standard kinds of traversals

- Preorder traversal
- Process node
- Process left subtree
- Process right subtree
- Postorder traversal
- Process left subtree
- Process right subtree
- Process node
- Level-order traversal
- Not recursive uses a queue

Tree with Parent Pointers

\square In some applications, it is useful to have trees in which nodes can reference their parents
\square Analog of doubly-linked lists

Suffix Trees

- Given a string s, a suffix tree for s is a tree such that
- each edge has a unique label, which is a nonnull substring of s
- any two edges out of the same node have labels beginning with different characters
- the labels along any path from the root to a leaf concatenate together to give a suffix of s
- all suffixes are represented by some path
- the leaf of the path is labeled with the index of the first character of the suffix in s
- Suffix trees can be constructed in linear time

Things to Think About

What if we want to delete

 data from a BST?A BST works great as long as it's balanced

How can we keep it
balanced? This turns out to be hard enough to motivate us to create other kinds of trees
Useful Facts about Binary Trees

trees

Suffix Trees

Decision Trees

\square Classification:

- Attributes (e.g. is CC used more than 200 miles from home?)
\square Values (e.g. yes/no)
\square Follow branch of tree based on value of attribute.
\square Leaves provide decision.
\square Example:
\square Should credit card transaction be denied?

Huffman Compression of "Ulysses"

BSP Trees

$\square B S P=$ Binary Space Partition (not related to BST!)
\square Used to render 3D images composed of polygons

- Each node n has one polygon p as data
- Left subtree of n contains all polygons on one side of p
\square Right subtree of n contains all polygons on the other side of p
\square Order of traversal determines occlusion (hiding)!

Tree Summary

\square A tree is a recursive data structure
\square Each cell has 0 or more successors (children)

- Each cell except the root has at exactly one predecessor (parent)
- All cells are reachable from the root
- A cell with no children is called a leaf
\square Special case: binary tree
- Binary tree cells have a left and a right child - Either or both children can be null
\square Trees are useful for exposing the recursive structure of natural language and computer programs

