
ABSTRACT DATA TYPES 
SETS, LISTS, TREES, ETC. 
Lecture 9 
CS2110 – Fall 2013 



References and Homework 
2 

¨  Text: 
¤ Chapters 10, 11 and 12 

 
¨  Homework: Learn these List methods, from http://

docs.oracle.com/javase/7/docs/api/java/util/List.html 
¤ add, addAll, contains, containsAll, get, indexOf, 

isEmpty, lastIndexOf, remove, size, toArray 
¤ myList = new List(someOtherList) 
¤ myList = new List(Collection<T>) 
¤ Also useful: Arrays.asList() 



Introduction to Danaus 
3 

Simulation of a Butterfly on an island, with water, 
cliffs, trees. A3, just fly around in a specific way. A5, 
A5, collect info about the island, A6 collect flowers, 
etc. Aroma, wind. 



Understanding assignment A3 

(1,4) (2,4) (3,4) (4,4) 

(1,3) (2,3) (3,3) (4,3) 

(1,2) (2,2) (3,2) (4,2) 

(1,1) (2,1) (3,1) (4,1) 

¨  A 4x4 park with the 
butterfly in position 
(1,1), a flower and a 
cliff. 

4 



Understanding assignment A3 

(1,4) (2,4) (3,4) (4,4) 

(1,3) (2,3) (3,3) (4,3) 

(1,2) (2,2) (3,2) (4,2) 

(1,1) (2,1) (3,1) (4,1) 

¨  A 4x4 park with the 
butterfly in position 
(1,1), a flower and a 
cliff. 

¨  The same park! The 
map “wraps” as if the 
park lives 
on a torus!    

5 

(3,2) (4,2) (1,2) (2,2) 

(3,1) (4,1) (1,1) (2,1) 

(3,4) (4,4) (1,4) (2,4) 

(3,3) (4,3) (1,3) (2,3) 



Summary of These Four Lectures 
6 

Look at various implementations of these ADTs from the stand-
point of speed and space requirements. Requires us to talk about 
Asymptotic Complexity: Determining how much time/space an 
algorithm takes. 
Loop invariants: Used to help develop and present loops that 
operate on these data structures —or any loops, actually. 
 

Discuss Abstract Data Type (ADT): set of values together with 
operations on them: Examples are: 

set, bag or multiset                         tree, binary tree, BST 
list or sequence, stack, queue         graph 
map, dictionary 



Abstract Data Type (ADT) 
7 

An Abstract Data Type, or ADT:  
A type (set of values together with operations on them), where: 

¤ We state in some fashion what the operations do 
¤ We may give constraints on the operations, such as how 

much they cost (how much time or space they must take) 

We use ADTs to help describe and implement many important 
data structures used in computer science, e.g.: 

set, bag or multiset                         tree, binary tree, BST 

list or sequence, stack, queue         graph 

map, dictionary 



ADT Example: Linked List 

¨  Head = first element 
of the list 

¨  Tail = rest of the list 

8 

10	 84	-7	 1	33	

tail head 

φ 



ADT example: set (bunch of different values) 
9 

Set of values: Values of some type E (e.g. int) 
Operations: 

 1. Create an empty set (using a new-expression) 
 2. size()       –   size of the set 
 3. add(v)   –   add value v to the set (if it is not in) 
 4. delete(v) –   delete v from the set (if it is in) 
 5. isIn(v)   –   = “v is in the set” 

Constraints: size takes constant time. 
add, delete, isIn take expected (average) 
constant time but may take time 
proportional to the size of the set. 

We learn about  
hashing later on, it 

gives us such an 
implementation 



Java Collections Framework 
10 

Java comes with a bunch of interfaces and classes for 
implementing some ADTs like sets, lists, trees. Makes it EASY to 
use these things. Defined in package java.util. 

Homework: Peruse these two classes in the API package: 

ArrayList<E>:  Implement a list or sequence –some methods: 
 add(e)         add(i, e)       remove(i)     remove(e) 

           indexOf(e)   lastIndexOf(e)                 contains(e) 
           get(i)           set(i, e)          size()          isEmpty() 
Vector<E>: Like ArrayList, but an older class 

i: a position. First is 0 
e: an object of class E 

They  use an array to 
implement the list! 



Maintaining a list in an array 

¤  Must specify array size at creation 
¤  Need a variable to contain the number of elements 
¤  Insert, delete require moving elements 
¤  Must copy array to a larger array when it gets full 

11 

24   -7   87   78    

unused 

Class invariant: elements are, 
in order, in b[0..size-1] 

b 

size 4 

When list gets full, create a new 
array of twice the size, copy values 
into it, and use the new array 



Java Collections Framework 
12 

Homework: Peruse following in the API package: 

LinkedList<E>:  Implement a list or sequence –some methods: 

 
 add(e)         add(i, e)       remove(i)     remove(e) 

           indexOf(e)   lastIndexOf(e)                 contains(e) 
           get(i)           set(i, e)          size()          isEmpty() 

 getFirst()      getLast() 

i: a position. First is 0 
e: an object of class E 

Uses a doubly linked list 
to implement the list or 
sequence of values 



Stack<E> in java.util       Queue not in java.util 
13 

Stack<E>:  Implements a stack: 
 size()          isEmpty() 
 push(e)        pop()       peek() 

Queue Implement a queue:   
  size()          isEmpty() 

 push(e)        pop()       peek() 
 

Stack LIFO last in first out 

Queue: FIFO first in first out 

peek: get top or first value but don’t remove it 

Stack is actually a 
subclass of Vector, 
So you can use all 

of Vector’s 
methods 



Linked List 

¨  Head = first element 
of the list 

¨  Tail = rest of the list 

14 

10	 84	-7	 1	33	

tail head 

φ 



Access Example: Linear Search 
15 

 
public static boolean search(T x, ListCell c) { 
   while(c != null) { 
      if (c.getDatum().equals(x)) return true; 
      c = c.getNext(); 
   } 
   return false; 
} 



Why would we need to write code for 
search?  It already exists in Java utils! 

16 

¨  Good question!  In practice you should always use 
indexOf(), contains(), etc 

¨  But by understanding how to code search, you gain 
skills you’ll need when working with data structures 
that are more complex and that don’t match 
predefined things in Java utils 

¨  General rule: If it already exists, use it.  But for 
anything you use, know how you would code it! 



Recursion on Lists 
17 

¨  Recursion can be done on lists 
¤  Similar to recursion on integers 

¨  Almost always 
¤  Base case: empty list 
¤  Recursive case: Assume you can solve problem on the tail, 

use that in the solution for the whole list 

¨  Many list operations can be implemented very simply 
by using this idea 
¤ Although some are easier to implement using iteration 



Recursive Search 
18 

¨  Base case: empty list 
¤  return false 

¨  Recursive case: non-empty list 
¤  if data in first cell equals object x, return true 
¤ else return the result of doing linear search on the tail 



Recursive Search: Static method 
19 

public static boolean search(T x, ListCell c) { 

   if (c == null) return false; 

   if (c.getDatum().equals(x)) return true; 

   return search(x, c.getNext()); 

} 



Iterative linked list reversal  
20 

Change this: 
 
 
into this: 

v1 
val   succ 

Legend: 

head      v3 v2 v1 v4  null 

head      v3 v2 v1  null v4 

Reverse the list by changing 
head and all the succ fields 

pre 

post 



Iterative linked list reversal  
21 

Change this: 
 

into this: 

head      v3 v2 v1  null v4 

head      v3 v2 v1 v4  null 

Use a loop, changing one succ field at a time.  Getting it right is 
best done by drawing a general picture that shows the state of 
affairs before/after each iteration of the loop. Do this by drawing a 
picture that combines the precondition and postcondition. 

pre 

post 



Iterative linked list reversal  
22 

Change this: 
 

into this: 

head      v3 v2 v1  null v4 

head      v3 v2 v1 v4  null 

The loop will fix the succ fields of nodes beginning with the first 
one, then the second, etc. 

The first part of the list will be reversed —look like pre 

The second part will not be reversed —look like post 

pre 

post 



Iterative linked list reversal  
23 

head      v(n-1) v1  null vn 

head      v2 v1 vn  null pre 

post 

     vi v1  null 
first i nodes reversed 

     v(i+1) vn  null 

rest unreversed 

loop invariant (it’s always true) 



Iterative linked list reversal  
24 

head      v(n-1) v1  null vn 

head      v2 v1 vn  null pre 

post 

p1         p2       null 
Reversed part 

p3           p4       null 

Unreversed part 

head 

u 



Make the invariant true initially 
25 

head      v2 v1 vn  null pre 

p1         p2       null 
Reversed part 

p3           p4       null 

Unreversed part 

head 

u 

Initially, unreversed part is whole thing:   u= head; 
Reversed part is empty:                             head= null; 



When to stop loop? 
26 

head      v(n-1) v1  null vn post 

p1         p2       null 
Reversed part 

p3           p4       null 

Unreversed part 

head 

u 

u= head; head= null; 
while (                              ) 

Upon termination, unreversed 
part is empty: u == null. 
Continue as long as u != null 

u != null 



Loop body: move one node from u list to head list. Draw 
the situation after the change 

27 

p1         p2       null 

p3           p4       null 

head 

u 

27he 

p3         p2       null 

p4           p1       null 

head 

u 

u= head; head= null; 
while (u != null) {                                                                                 }                                                                   Node t= head; head= u; u= u.succ; head.succ= t;  



Recursive Reverse 
28 

¨  Homework:  Write a recursive function for Linked 
List Reversal! 


