
2/20/14

1

GRAMMARS & PARSING
Lecture 8
CS2110 – Spring 2014

1

If you are going to form a
group for A2, please do it
before tomorrow (Friday)
noon

Pointers. DO visit the java spec website
2

Parse trees: Text page 592 (23.34), Figure 23-31
¤ Definition of Java Language, sometimes useful: http://

docs.oracle.com/javase/specs/jls/se7/html/index.html
¤ Grammar for most of Java, for those who are curious:

http://csci.csusb.edu/dick/samples/java.syntax.html

Homework:

¨  Learn to use these Java string methods:
s.length, s.charAt(), s.indexOf(), s.substring(), s.toCharArray(),
s = new string(char[] array).

¨  Hint: These methods will be useful on prelim1! (They can be
useful for parsing too…)

Application of Recursion
3

¨  So far, we have discussed recursion on integers
¤  Factorial, fibonacci, an, combinatorials

¨  Let us now consider a new application that shows off the full
power of recursion: parsing

¨  Parsing has numerous applications: compilers, data retrieval,
data mining,…

Motivation
4

¨  The cat ate the rat.
¨  The cat ate the rat slowly.

¨  The small cat ate the big rat
slowly.

¨  The small cat ate the big rat
on the mat slowly.

¨  The small cat that sat in the
hat ate the big rat on the mat
slowly, then got sick.

¨  …

� Not all sequences of
words are legal
sentences

 The ate cat rat the
� How many legal

sentences are there?
� How many legal Java

programs
� How do we know what

programs are legal?

http://docs.oracle.com/javase/specs/jls/se7/html/index.html

A Grammar
Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like
Verb → see

5

Grammar: set of rules for
generating sentences of a
language.

Examples of Sentence:
§ boys see bunnies
§ bunnies like girls

� The words boys, girls, bunnies, like, see are
called tokens or terminals

� The words Sentence, Noun, Verb are called
nonterminals

A Grammar

Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like
Verb → see

6

� White space between words does
not matter

� This is a very boring grammar
because the set of Sentences is finite
(exactly 18 sentences)

Our sample grammar has these rules:
A Sentence can be a Noun followed by a Verb followed by

a Noun
A Noun can be ‘boys’ or ‘girls’ or ‘bunnies’
A Verb can be ‘like’ or ‘see’

2/20/14

2

A Recursive Grammar
7

Sentence → Sentence and Sentence
Sentence → Sentence or Sentence

Sentence → Noun Verb Noun

Noun → boys

Noun → girls

Noun → bunnies
Verb → like

Verb → see

Grammar is more interesting than
the last one because the set of
Sentences is infinite

What makes this set infinite?
Answer:
Recursive definition of
Sentence

Detour
8

What if we want to add a period at the end of every sentence?
Sentence → Sentence and Sentence .

Sentence → Sentence or Sentence .

Sentence → Noun Verb Noun .

Noun → …

Does this work?
No! This produces sentences like:

girls like boys . and boys like bunnies . .

Sentence Sentence

Sentence

Sentences with Periods
9

PunctuatedSentence → Sentence .
Sentence → Sentence and Sentence

Sentence → Sentence or Sentence

Sentence → Noun Verb Noun

Noun → boys

Noun → girls
Noun → bunnies

Verb → like

Verb → see

� New rule adds a period only
at the end of sentence.

� The tokens are the 7 words
plus the period (.)

� Grammar is ambiguous:
 boys like girls
 and girls like boys
 or girls like bunnies

Grammars for programming languages
10

Grammar describes every possible legal expression
You could use the grammar for Java to list every possible
Java program. (It would take forever)

Grammar tells the Java compiler how to understand a
Java program

Grammar for Simple Expressions (not the best)

11

E → integer
E → (E + E)
Simple expressions:
¨  An E can be an integer.
¨  An E can be ‘(’ followed by an E

followed by ‘+’ followed by an E
followed by ‘)’

Set of expressions defined by this
grammar is a recursively-defined set

¨  Is language finite or infinite?
¨  Do recursive grammars always

yield infinite languages?

Some legal expressions:
§  2
§  (3 + 34)
§  ((4+23) + 89)

Some illegal expressions:
§  (3
§  3 + 4

Tokens of this grammar:
(+) and any integer

Parsing
12

Use a grammar in two ways:
¨  A grammar defines a

language (i.e., the set of
properly structured
sentences)

¨  A grammar can be used to
parse a sentence (thus,
checking if the sentence is in
the language)

To parse a sentence is to build a
parse tree: much like
diagramming a sentence

� Example: Show that
 ((4+23) + 89)
is a valid expression E by
building a parse tree

E

(E) E +

89
(E) E +

4 23

2/20/14

3

Recursive Descent Parsing
13

Write a set of mutually recursive methods to check if a sentence
is in the language (show how to generate parse tree later)

One method for each nonterminal of the grammar. The method is
completely determined by the rules for that nonterminal. On the
next pages, we give a high-level version of the method for
nonterminal E:

 E → integer
 E → (E + E)

Parsing an E
14

/** Unprocessed input starts an E. Recognize that E, throwing
 away each piece from the input as it is recognized.
 Return false if error is detected and true if none detected.
 Upon return, all processed input has been removed from input. */
public boolean parseE()

E → integer
E → (E + E)

(2 + (4 + 8) + 9)

before call: already processed unprocessed

(2 + (4 + 8) + 9)

after call: already processed unprocessed
(call returns true)

Specification: /** Unprocessed input starts an E. …*/

15

public boolean parseE() {
 if (first token is an integer) remove it from input and return true;
 if (first token is not ‘(‘) return false else Remove it from input;
 if (!parseE()) return false;
 if (first token is not ‘+‘) return false else Remove it from input;
 if (!parseE()) return false;
 if (first token is not ‘)‘) return false else Remove it from input;
 return true;

}

E → integer
E → (E + E)

Same code used 3 times. Cries out for a method to do that

Illustration of parsing to check syntax
16

E → integer
E → (E + E)

 (1 + (2 + 4))

E

E E

The scanner constructs tokens
17

An object scanner of class Scanner is in charge of the input
String. It constructs the tokens from the String as necessary.

e.g. from the string “1464+634” build the token “1464”, the
token “+”, and the token “634”.

It is ready to work with the part of the input string that has not
yet been processed and has thrown away the part that is
already processed, in left-to-right fashion.

 already processed unprocessed

(2 + (4 + 8) + 9)

Change parser to generate a tree
18

/** … Return a Tree for the E if no error.
 Return null if there was an error*/
public Tree parseE() {

 if (first token is an integer) remove it from input and return true;

 …
}

E → integer
E → (E + E)

if (first token is an integer) {
 Tree t= new Tree(the integer);
 Remove token from input;
 return t;
}

2/20/14

4

Change parser to generate a tree
19

/** … Return a Tree for the E if no error.
 Return null if there was an error*/
public Tree parseE() {

 if (first token is an integer) … ;
 if (first token is not ‘(‘) return null else Remove it from input;
 Tree t1= parse(E); if (t1 == null) return null;
 if (first token is not ‘+‘) return null else Remove it from input;
 Tree t2= parse(E); if (t2 == null) return null;
 if (first token is not ‘)‘) return false else Remove it from input;
 return new Tree(t1, ‘+’, t2);

}

E → integer
E → (E + E)

Using a Parser to Generate Code
20

¨ Code for 2 + (3 + 4)
PUSH 2
PUSH 3
PUSH 4
ADD
ADD

ADD removes the two top
values from the stack, adds
them, and placed the result on
the stack

parseE can generate code
as follows:

§ For integer i, return string
“PUSH ” + i + “\n”

§ For (E1 + E2), return a
string containing
w Code for E1
w Code for E2
w “ADD\n”

Does Recursive Descent Always Work?
21

Some grammars cannot be used for recursive descent
Trivial example (causes infinite recursion):

S → b
S → Sa

Can rewrite grammar
S → b
S → bA
A → a
A → aA

For some constructs, recur-
sive descent is hard to use

Other parsing techniques
exists – take the compiler
writing course

Syntactic Ambiguity
22

Sometimes a sentence has more than one parse tree
S → A | aaxB
A → x | aAb
B → b | bB

This kind of ambiguity sometimes shows up in
programming languages. In the following, which then does
the else go with?

 if E1 then if E2 then S1 else S2

aaxbb can
be parsed

in two
ways

Grammar that gives precedence to * over +

23

E -> T { + T }
T -> F { * F }
F -> integer
F -> (E)

2  + 3 * 4
 says do * first

T

E

Notation: { xxx } means
 0 or more occurrences of xxx.
E: Expression T: Term
F: Factor

F

T

F F

T

E

F

T

F F

2  + 3 * 4
Try to do + first, can’t complete tree

Syntactic Ambiguity
24

This kind of ambiguity sometimes shows up in programming
languages. In the following, which then does the else go with?

 if E1 then if E2 then S1 else S2

This ambiguity actually affects the program’s meaning

Resolve it by either
(1)  Modify the grammar to eliminate the ambiguity (best)
(2)  Provide an extra non-grammar rule (e.g. else goes with

closest if)

Can also think of modifying the language (require end delimiters)

2/20/14

5

Exercises
25

Think about recursive calls made to parse and generate code for
simple expressions

2
(2 + 3)
((2 + 45) + (34 + -9))

Derive an expression for the total number of calls made to
parseE for parsing an expression Hint: think inductively

Derive an expression for the maximum number of recursive calls
that are active at any time during the parsing of an expression
(i.e. max depth of call stack)

Exercises
26 Write a grammar and recursive program for sentence

palindromes that ignores white spaces & punctuation
Was it Eliot's toilet I saw? No trace; not one carton
Go deliver a dare, vile dog! Madam, in Eden I'm Adam

Write a grammar and recursive program for strings AnBn

AB AABB
AAAAAAABBBBBBB

Write a grammar and recursive program for Java identifiers
<letter> [<letter> or <digit>]0…N

j27, but not 2j7

