

Recursion

Arises in two forms in computer science

- Recursion as a mathematical tool for defining a function in terms of itself in a simpler case

Recursion as a programming tool. You've seen this previously but we'll take it to mind-bending extremes (by the end of the class it will seem easy!)

Mathematical induction is used to prove that a recursive function works correctly. This requires a good, precise function specification. See this in a later lecture.

Overview references to sections in text
\square Note: We've covered everything in JavaSummary.pptx!
\square What is recursion? 7.1-7.39 slide 1-7
\square Base case 7.1-7.10 slide 13
\square How Java stack frames work 7.8-7.10 slide 28-32

Homework. Copy our "sum the digits" method but comment out the base case. Now run it: what happens in Eclipse?

Now restore the base case. Use Eclipse in debug mode and put a break statement on the "return" of the base case. Examine the stack and look at arguments to each level of the recursive call.

Recursion as a math technique

Broadly, recursion is a powerful technique for defining functions, sets, and programs
A few recursively-defined functions and programs

- factorial
- combinations
- exponentiation (raising to an integer power)

Some recursively-defined sets

- grammars
\square expressions
\square data structures (lists, trees, ...)

Example: Is a string a palindrome?

```
/** return sum of digits in n.
* Precondition: \(\mathrm{n}>=0\) */
    public static int sum(int n) { sum calls itself!
        if ( }\textrm{n}<10)\mathrm{ return n,
    // {n has at least two digits }
    // return first digit + sun of rest
    return n%10 + sum(n/10);
}
```

E.g. $\operatorname{sum}(87012)=2+(1+(0+(7+8)))=18$
/** = "s is a palindrome" */
public static boolean isPal(String s) \{
if (s.length() $<=1$) return true;
// \{ s has at least 2 chars \}
int $\mathrm{n}=$ s.length ()-1;
return s.charAt(0) == s.charAt(n) \&\& isPal(s.substring(1, n)); \}

Example: Count the e's in a string

```
/** = number of times c occurs in s */
public static int countEm(char c, String s) {
    if (s.length() == 0) return 0;
    // { s has at least 1 character }
    if (s.charAt(0)!= c)
        return countEm(c, s.substring(1));
    // { first character of s is c }
    return 1 + countEm (c, s.substring(1));
}
    \square countEm('e', "it is easy to see that this has many e's") = 4
    \square countEm('e', "Mississippi") = 0
```

A Recursive Program
$\begin{aligned} & 0!=1 \\ & n!=n \cdot(n-1)!, n>0 \end{aligned}$
$\begin{aligned} & \rho^{* *}=n!\text {. Precondition: } n>=0 * / \\ & \text { static int fact(int } n)\{ \\ & \text { if }(n==0) \\ & \quad \text { return } 1 ; \\ & / /\{n>0\} \\ & \text { return } n^{*} \text { fact }(n-1) ; \end{aligned}$

Example: The Factorial Function (n!)

Define $n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1$
read: " n factorial"
E.g. $3!=3 \cdot 2 \cdot 1=6$

Looking at definition, can see that $n!=n *(n-1)$!

By convention, $0!=1$
The function int \rightarrow int that gives n ! on input n is called the factorial function

General Approach to Writing Recursive

 Functions1. Find base case(s) - small values of n for which you can just write down the solution (e.g. $0!=1$)
2. Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g. ($n-1$) in our factorial example)
3. Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

A Legend

The priests were to transfer the disks from the first needle to the second needle, using the third as necessary.

But they could only move one disk at a time, and could never put a larger disk on top of a smaller one.

When they completed this task, the world would end!

$$
\text { Example }\left(\mathrm{C} t^{\prime} \mathrm{d}\right)
$$

For simplicity, suppose there were just 3 disks, and we' II refer to the three needles as A, B, and C..

We then move the top disk from B to C.

Example ($\mathrm{C}+$ ' d)

For simplicity, suppose there were just 3 disks, and we' Il refer to the three needles as A, B, and C...

We then move the top disk from A to B .
We then move the top disk from A to C .
or simplicity, suppose there were just 3 disks, and we' Il refer to the three needles as A, B, and C...

\square

Example ($\mathrm{C} t^{\prime} \mathrm{d}$)

For simplicity, suppose there were just 3 disks, and we' II refer to the three needles as A, B, and C...

We then move the top disk from A to B .

Our Problem

Today's problem is to write a program that generates the instructions for the priests to follow in moving the disks.

While quite difficult to solve iteratively, this problem has a simple and elegant recursive solution.

Example (Ct 'd)

For simplicity, suppose there were just 3 disks, and we' Il refer to the three needles as A, B, and C...

and we're done!
The problem gets more difficult as the number of disks increases...

General Approach to Writing Recursive Functions

1. Find base case(s) - small values of n for which you can just write down the solution (e.g. $0!=1$)
2. Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g. ($n-1$) in our factorial example)
3. Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

Design ($\mathrm{C} t^{\prime} \mathrm{d}$)

Induction Step: $\mathrm{n}>1$
\rightarrow How can recursion help us out?

b. Move the one remaining disk from A to B.

Design $\left(C t^{\prime} d\right)$
Induction Step: $\mathrm{n}>1$
\rightarrow How can recursion help us out?

d. We're done!

Tower of Hanoi: Code

void Hanoi(int n, string a, string b, string c) \{
if ($\mathrm{n}==1$) /* base case */
Move(a, b);
else \{ /* recursion */
Hanoi(n-1, $a, c, b)$;
Move (a, b);
Hanoi($n-1, c, b, a$);
\}

Non-Negative Integer Powers

$a^{n}=a \cdot a \cdot a \cdots a$ (n times)

Alternative description:

$$
\begin{aligned}
& \square a^{0}=1 \\
& \square a^{n+1}=a \cdot a^{n}
\end{aligned}
$$

$$
/ * *=\mathrm{a}^{\mathrm{n}} . \text { Pre: } \mathrm{n}>=0 * /
$$

static int power(int a, int n) \{
if $(\mathrm{n}=0)$ return 1 ;
return a^{*} power(a, $\mathrm{n}-1$);
\}

A Smarter Version

Power computation:

$\square a^{0}=1$

- If n is nonzero and even, $a^{n}=\left(a^{*} a\right)^{n / 2}$
- If n is nonzero, $a^{n}=a^{*} a^{n-1}$

Java note: For ints x and $y, x / y$ is the integer part of the quotient
Judicious use of the second property makes this a logarithmic

Example: $3^{8}=(3 * 3) *(3 * 3) *(3 * 3) *(3 * 3)=(3 * 3)^{4}$

algorithm, as we will see

Smarter Version in Java

$$
\mathrm{n}=0: \mathrm{a}^{0}=1
$$

$$
n \text { nonzero and even: } a^{n}=\left(a^{*} a\right)^{n / 2}
$$

\square n nonzero: $a^{n}=a \cdot a^{n-1}$

$$
\begin{aligned}
& / * *=\mathrm{a}^{* *} \mathrm{n} \text {. Precondition: } \mathrm{n}>=0 * / \\
& \text { static int power(int } \mathrm{a}, \text { int } \mathrm{n})\{ \\
& \text { if }(\mathrm{n}=0) \text { return } 1 ; \\
& \text { if }(\mathrm{n} \% 2=0) \text { return power }(\mathrm{a} * \mathrm{a}, \mathrm{n} / 2) ; \\
& \text { return a }{ }^{*} \text { power }(\mathrm{a}, \mathrm{n}-1) ; \\
& \}
\end{aligned}
$$

Build table of multiplications

n	n	mulis	Start with $\mathrm{n}=0$, then $\mathrm{n}=1$, etc. For each, calculate number of mults based on method body and recursion.
0		0	
1	2**0	1	
2	2**	2	See from the table: For n a power of 2, $\mathrm{n}=2^{* *} \mathrm{k}$, only $\mathrm{k}+1=(\log \mathrm{n})+1$ mults
3		3	
4	2**2	3	
5		4	For $\mathrm{n}=2 * * 15=32768$, only 16 mults!
6		4	
7		4	
8	2**3	4 s	```static int power(int a, int n) { if (}\textrm{n}==0)\mathrm{ return 1; if (}\textrm{n}%2==0)\mathrm{ return power (a*a, n/2); return a * power (a, n-1); }```
9		5	
...			
16	2**4	5 ,	

How Java "compiles" recursive code

Key idea:

\square Java uses a stack to remember parameters and local variables across recursive calls
\square Each method invocation gets its own stack frame

A stack frame contains storage for
\square Local variables of method
\square Parameters of method
\square Return info (return address and return value)
\square Perhaps other bookkeeping info Stack Frame

A new stack frame is pushed with each recursive call

The stack frame is popped
when the method returns
\square Leaving a return value (if

there is one) on top of
the stack

Example: power(2,5)

Conclusion

Recursion is a convenient and powerful way to define functions

Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:
\square Reduce a big problem to smaller problems of the same kind, solve the smaller problems
\square Recombine the solutions to smaller problems to form solution for big problem

Important application (next lecture): parsing

Extra Slides

A cautionary note

\square Keep in mind that each instance of the recursive function has its own local variables
\square Also, remember that "higher" instances are waiting while "lower" instances run
\square Do not touch global variables from within recursive functions

- Legal ... but a common source of errors
- Must have a really clear mental picture of how recursion is performed to get this right!

One thing to notice: Fibonacci

This way of computing the Fibonacci function is elegant but inefficient

It "recomputes" answers again and again!
To improve speed, need to save
known answers in a table!

- One entry per answer
- Such a table is called a cache

fib(0) fib(1)

After Memoization

Notice the development process
\square We started with the idea of recursion
\square
Created a very simple recursive procedure
Noticed it will be slow because it wastefully recomputes the
same thing again and again
\squareWe made it a bit more complex but gained a lot of speed in doing so
\square This is a common software engineering pattern

Why did it work?

\square This cached list "works" because for each value of n, either cached.get (n) is still undefined or has $\mathrm{fib}(\mathrm{n})$
\square Takes advantage of the fact that an ArrayList adds elements at the end and indexes from 0
cached@BA8900, size=5

Property of our code: cached.get(n) accessed after fib(n) computed

