Overview ref in text and Java

|
o Quick look at arrays slide 50-55

Summary.pptx

o Casting among classes C.33-C.36 (not good) slide 34-41

0 Static/Dynamic types (apparent/real types) slide 34-41
slide 40
slide 37-41

o Operator instanceof

o Function equals

Homework. Learn about while/ for loops in Java. Look in text.

CS/ENGRD 2110
SPRING 2014

Classes we work with today  class hierarchy:

Work with a class Animal and subclasses Object
like Cat and Dog Anilmal
Put components common to animals in Animal
Obiject, partition is there but not shown Dog Cat
class hierarchy: |20 al
age [[5] |Animal age [67] Animal
Animal(String, int) | | Apimal(String, int)
isOlder(Animal) isOlder(Animal)
i Cat(String, int) | Cat | | Dog(String, int)| Dog
getNoise() toString() | | getNoise() toString()
getWeight()

Which function is called?

Which function is called by
v[0].toString() ?

0 1 2
v

Remember,
partition Object
contains
toString() @ - aT‘
age[[5] |Animal age 6] Animal
Animal(String, int) Animal(String, int)
isOlder(Animal) isOlder(Animal)
Cat(String, int) | Cat | | Dog(String, int)| Dog
getNoise() toString() getNoise() toString()
getWeight()

while ( <bool expr>) { ... } /

for (int k=0; k <200; k=k+1) { ... } //

syntax

example

Animal[] v= new Animal[3];
e l

declaration of

Create array

array v of 3 elements

Assign value of
new-exp to v

Assign and refer to elements as usual:
v[0]= new Animal(...);
a= v[0].getAge();

Sometimes use horizontal
picture of an array:

Animal[]

O null
1] null
2| null

1

[0] 2
v

Static/apparent type

|
Each element v[k] is of type Animal.
Its declared type:
static type —known at
compile-time
apparent type

v[0

Should this call be allowed?
Should program compile?

].getWeight()

0] [al |

age[[5] |Animal

Animal(String, int)

age 6] Animal

v|a0 |null |al ||getWeight()

! . Animal(String, int)
isOlder(Animal) isOlder(Animal)
Cat(String, int) | Cat | | Dog(String, int)| Dog
0 1 2 | getNoise() toString() | | getNoise() toString()

2/7/14



View of object from static type

Each element v[K] is of
(static) type Animal.

From v[k], see only what is
in partition Animal and
partitions above it.

a0

age[[5 ] |Animal

Animal(String, int)
can’t see them isOlder(Animal)

0 1 2 | Cat(String, int) | Cat

v getNoise() toString()

getWeight()

Components
are in lower
partitions, but

Animal

getWeight() not in class Animal or
Object. Calls are illegal, program
does not compile:

v[0].getWeight() v[k].getWeight()

al

age [67] Animal
Animal(String, int)
isOlder(Animal)

Dog(String, int)] Dog
getNoise() toString()

Casting up class hierarchy

Object
You know about casts like
(int) (5.0/7.5) Animal
(double) 6 Dog Cat

double d=5; // automatic cast

‘We now discuss casts up and down the
class hierarchy.

Animal h= new Cat(“N”, 5);
Cat c= (Cat) h;

a0

age [5] | Animal

Animal(String, int)

isOlder(Animal)
Cat(String, int) | Cat
getNoise() toString()
getWeight()

al

Animal(String, int)
isOlder(Animal)
Dog(String, int)] Dog
getNoise() toString()

age 6 Animal

Implicit upward cast

public class Animal {
/** = "this Animal is older than h" */
public boolean isOlder(Animal h) {
return age > h.age;

}

Call c.isOlder(d)

a0

age [5 ] | Animal

Animal(String, int)
isOlder(Animal)
Cat(String, int) | Cat

getNoise() toString()
getWeight()

B

Explicit casts: unary prefix operators

Principle: you may cast an object to the
name of any partition that occurs within it
—and to nothing else.

a0 maybe cast to Object, Animal, Cat.

An attempt to cast it to anything else
causes an exception

(Cat) ¢
(Object) ¢
(Animal) (Animal) (Cat) (Object) ¢

These casts don’t take any time. The object

a0
does not change. It’s a change of perception ¢

[w]
equals() ... \Obji

age [[5] |Animal

Animal(String, int)

isOlder(Animal)
Cat(String, int) | Cat
getNoise() toString()
getWeight()

Cat

h is created. al is cast up to class age 6 Animal
Animal and stored in h Animal(String, int)
Upward casts done isOlder(Animal)
automatically when needed Dog(String, int)| Dog
h c d getNoise() toString()
Animal Cat Dog
S'rq'rlc/dynqmlc types al
age [6_] Animal
public class Animal { ¢ .
/** = "this is older than h" */ Ammal(Str}ng, int)
public boolean isOlder(Animal h) { ISOIder(_AmItﬂaD
return age > h.age; Dog(String, int) Dog
} getNoise() toString()

Static or apparent type of h is
Animal. Syntactic property
Determines at compile-time
what components can be used:
those available in Animal

[ar

Animal

Dynamic or real type of h is
Dog. Semantic/runtime property
If a method call is legal,
dynamic type determines which
one is called (overriding one)

Components used from h ol
age [6_] Animal
public class Animal { ¢ L
/% = "this is older than h" */ Animal(String, int)
. . . isOlder(Animal)
public boolean isOlder(Animal h) { —
return age > h.age; Dog(String, int) Dog
} getNoise() toString()
h.toString() OK —it’s in class Object partition —— By overriding
h.isOlder(...) OK —it’s in Animal partition ey el

h.getWeight() ILLEGAL —not in Animal

partition or Object partition

toString() in
Cat partition

[ar

Animal

2/7/14



Explicit downward cast

public class Animal { a0
// If Animal is a Cat, return its weight; age [57] | Animal
otherwise, return 0.

public int checkWeight(Animal h) { Animal(String, int

i (1 ) isOlder(Animal)
return 0; Cat(String, int) | Cat
//{hisaCat} getNoise() toString()
Cat ¢= (Cat) h; // downward cast getWeight()
return c.getWeight();
} (Dog) h leads to runtime error.

Don’ t try to cast an object to
&

. something that it is not!
Animal

Operator instanceof, explicit downward cast

public class Animal { a0
// If Animal is a cat, return its weight; age [5] |Animal
otherwise, return 0.

public int checkWeight(Animal h) { Animal(String, int

if (| (h instanceof Cat) ) isOlder(Animal)
return O; Cat(String, int) | Cat
//{hisaCat} getNoise() toString()
Cat ¢= (Cat) h; // downward cast getWeight()
return c.getWeight();
} <object> instanceof <class>
true iff object is an instance of the
h Animal class —if Jobject has a partition for

class

Function equals

public class Object {
/** Return true iff this object is the same as ob */
public boolean equals(Object b) {
return this == b;
}

}

This gives a null-pointer
exception:

x.equals(y) is same as null.equals(y)

X==Yy
except when x is null!

y
Object Object

Overriding function equals

Override function equals in a class to give meaning to:

“these two (possibly different) objects of the class have
the same values in some of their fields”

For those who are mathematically inclined, like any
equality function, equals should be reflexive,
symmetric, and transitive.

Reflexive: b.equals(b)
Symmetric: b.equals(c) = c.equals(b)
Transitive: if b.equals(c) and c.equals(d), then b.equals(d)

Function equals in class Animal
a0

public class Animal { \Obje—ct

/** = “h is an Animal with the same equals(Object)

values in its fields as this Animal” */ - .
public boolean equals (Object h) { toString() M
name [T age ]

Animal(String, int)
equals()
toString()

if (!(h instanceof Animal))

age == ob\age;

1. Because of h is an Animal in spec,
need the test h instanceof Animal

Function equals in class Animal
a0

public class Animal { \Obje—ct

/** = “h is an Animal with the same equals(Object)

values in its fields as this Animal” */ - :
public boolean equals (Object h) { toString() M
name age [ ]

Animal(Stfing, int)
equals()
toString()

if (!(h instanceof Animal))
return false;
Animal ob= (Animal) h;

age == ol.age;

2. In order to be able Yo reference fields in partition Animal,
need to cast h to Animal

2/7/14



Function equals in class Animal

a0

public class Animal {
/*¥* = “h is an Animal with the same
values in its fields as this Animal” */
public boolean equals (Object h) {
if (!(h instanceof Animal))
return false;
Animal ob= (Animal) h;
return name.equals(ob.name) &&

age == op.age;
}

Object

equals(Object)

toString() | Animal
name [T age ]

Animal(String, int)
equals()
toString()

3. Use String equals fipction to check for equality of String

values. Use == for primitive types

Why can't the parameter type be Animal?

a0

public class Animal {
/*¥* = “h is an Animal with the same
values in its fields as this Animal” */
public boolean equals (Animal h) {

if (!(h instanceof Animal))
return false;
Animal ob= (Animal)) h;
return name.equals(ob.name) &&
age == ob.age;

Object

equals(Object)

What is wrong with this2

toString() [ Animal |
name [ age [T

Animal(String, int)
equals()
toString()

Recitation this week: VERY important

Recitation this week is about
abstract classes
interfaces

Learn:

Don’t miss
recitation

Why we may want to make a class abstract

Why we may want to make a method abstract

An interface is like a very restricted abstract class,

with different syntax for using it.

2/7/14



