
2/3/14	

1	

CS/ENGRD 2110
SPRING 2014
Lecture 4: The class hierarchy; static components
http://courses.cs.cornell.edu/cs2110

1

References to text and JavaSummary.pptx
2

¨  A bit about testing and test cases
¨  Class Object, superest class of them all.

 Text: C.23 slide 30

¨  Function toString() C.24 slide 31-33

¨  Overriding a method C15–C16 slide 31-32

¨  Static components (methods and fields) B.27 slide 21, 45
¨  Java application: a program with a class that declares a

method with this signature:

 public static void toString(String[])

Homework
3

1.  Read the text, Appendix A.1–A.3
2.  Read the text, about the if-statement: A.38–A.40
3.  Visit course website, click on Resources and then on Code

Style Guidelines. Study
 2. Format Conventions
 4.5 About then-part and else-part of if-statement

Specifications of boolean functions
4

/** Return true if this Bee is male and false if not. */
public boolean isMale()
/** Return “this Bee is male”. */
public boolean isMale()

Says same thing. Shorter, no
case analysis. Think of it as
 return value of sentence
 “this Bee is male”

Do you say, “it returns absolute value of -20?
Of course not. Mathematicians say simply
“that’s the absolute value of 60

abs(-20)

/** = “this Bee is male”. */
Read as: the call isMale() equals the value of the
sentence “this Bee is male”.

What is “the name of” the object?
5

The name of the object below is

 Bee@aa11bb24

It contains a pointer to the object –i.e. its address in memory, and
you can call it a pointer if you wish. But it contains more than that.

“Mumsie”	

null	
mom	
 pop	

children	

null	

1	

name	

Bee

Bee@aa11bb24

Bee@aa11bb24	
b	

Bee	

Variable b, declared as Bee b;
contains not the object but the
name of the object (or a pointer
to the object).

 A bit about testing
6

Test case: Set of input values, together with the expected output.	

Develop test cases for a method from its specification --- even
before you write the methods body.	

/** = number of vowels in word w.	

Precondition: w contains at least one letter and nothing but letters*/	

public int numberOfVowels(String w) {	

 …	

}	

Developing test cases
first, in “critique”
mode, can prevent

wasted work and
errors.	

How many vowels in each of these words?
 creek
 syzygy

2/3/14	

2	

Test cases for number of children
7

“Child 2”	

j0	
mom	
 pop	

children	

w0	

0	

name	

Bee
s0

“Mumsie”	

null	
mom	
 pop	

children	

null	

1	

name	

Bee
j0

“Opa”	

null	
mom	
 pop	

children	

null	

1	

name	

Bee
b0

“Popsi”	

null	
mom	
 pop	

children	

b0	

2	

name	

Bee

w0

“Child 1”	

null	
mom	
 pop	

children	

w0	

name	

L0

1	

Bee

If L0 gets a mom,
say j0, the mom’s
number of children
must increase.
You should test this.

Class W (for Worker)
8

/** Constructor: worker with last name n, SSN s, boss b (null if none).
 Prec: n not null, s in 0..999999999 with no leading zeros.*/
public W(String n, int s, W b)

/** = worker's last name */
public String getLname()

/** = last 4 SSN digits */
public String getSsn()

 /** = worker's boss (null if none) */
 public W getBoss()

 /** Set boss to b */
 public void setBoss(W b)

W@af
W lname “Obama”

ssn 123456789
boss null

W(…) getLname()
getSsn() getBoss() setBoss(W)

Contains other methods!

toString()
equals(Object) hashCode()

Class Object: the superest class of them all
9

Java: Every class that does not
extend another extends class
Object. That is,

 public class W {…}

is equivalent to

 public class W extends Object {…}

W@af

W lname “Obama”
ssn 123456789

boss null
W(…) getLname()
getSsn(), getBoss() setBoss(W)

Object toString()
equals(Object) hashCode()

We draw object like this

We often leave off the top
partition to reduce clutter; we
know that it is always there

Method toString
10

Object
W@af

lname “Obama”
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

Java Convention: Define toString() in
any class to return a representation of
an object, giving info about the values
in its fields.	

New definition of toString() overrides
the definition in partition Object	

c W@af

toString() … c.toString() calls this method

In appropriate places, the expression
c automatically does c.toString()	

Method toString
11

Object
W@af

lname “Obama”
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

public class W {	

 …	

 /** Return a representation of this object */	

 public String to String() {	

 return “Worker ” + lname + “.” +	

 “ Soc sec: …” + getSSn() + “.” +	

 (boss == null ? “” : “Boss ” + boss.lname + “.”);	

 }	

c W@af

toString() … c.toString() calls this method

Another example of toString()
12

/** An instance represents a point (x, y) in the plane */	

public class Point {	

	
private int x; // x-coordinate	

	
private int y; // y-coordinate	

	
…	

	
/** = repr. of this point in form “(x, y)” */	

	
public String toString() {	

 	
 	
return “(” + x + “, ” + y + “)”;	

	
}	

}	

Point@fa8
Point

x 9 y 5

Function toString should give the values in the
fields in a format that makes sense for the class.	

(9, 5)

2/3/14	

3	

Intro to static components
13

W@af
W

lname “Om”
boss null

isBoss(W c) {
…}

W@b4
W

lname “Jo”
boss W@af

isBoss(W c) {
 return
 this == c.boss; }

/** = “this object is c’s boss”.	

 Pre: c is not null. */	

public boolean isBoss(W c) {	

 return this == c.boss;	

}	

keyword this evaluates
to the name of the object

in which it appears	

x.isBoss(y) is false	

y W@af

x W@b4

y.isBoss(x) is true	

Spec: return the value of
that true-false sentence.
True if this object is c’s
boss, false otherwise

Intro to static components
14

W@af
W

lname “Om”

ssn 35

boss null

isBoss(W)

W@b4
W

lname “Jo”

ssn 21

boss W@af

isBoss(W)

/** = “this object is c’s boss”.	

 Pre: c is not null. */	

public boolean isBoss(W c) {	

 return this == c.boss;	

}	

/** = “b is c’s boss”.	

 Pre: b and c are not null. */	

public boolean isBoss(W b, W c) {	

 return b == c.getBoss();	

}	

isBos(W,W) isBoss(W,W)

y W@af

x W@b4

Body doesn’t refer to any
field or method in the object.

Why put method in object?

Intro to static components
15

W@af
W

lname “Om”

ssn 35

boss null

isBoss(W)

W@b4
W

lname “Jo”

ssn 21

boss W@af

isBoss(W)

/** = “b is c’s boss”.	

 Pre: b and c are not null. */	

public static boolean isBoss(W b, W c) {	

 return b == c.getBoss();	

}	

isBos(W,W) y W@af

x W@b4

static: there is only one
copy of the method. It is
not in each object

Box for W (objects, static components)

x.isBoss(x, y)
y.isBoss(x, y)

Preferred:
W.isBoss(x, y)

Java application
16

Java application: bunch of classes with at
least one class that has this procedure:
 public static void main(String[] args) {
 …
 }

Type String[]: array of
elements of type String.
We will discuss later

Running the application consists of calling method main

Convention: if method main doesn’t use
parameter args, then call it with argument null

One use of static variable:
 maintain info about all objects

17

W@12

W

lname “Bid”

W@bd

W

“Ob” lname

numObjects 2

Box for W	

public class W {
 private static int numObjects;
 …

}

To have numObjects contain the
number of Objects of class W
that have been created, simply
increment it in constructors

/** Constructor: */
public W(…) {
 …
 numObjects=
 numObjects + 1;
}

