Friday is Halloween. Why did I receive a Christmas card on Halloween?
Readings?

- Read chapter 28
Shortest Paths in Graphs

Problem of finding shortest (min-cost) path in a graph occurs often
- Find shortest route between Ithaca and West Lafayette, IN
- Result depends on notion of cost
 - Least mileage... or least time... or cheapest
 - Perhaps, expends the least power in the butterfly while flying fastest
 - Many “costs” can be represented as edge weights

Every time you use googlemaps to find directions you are using a shortest-path algorithm
Dijkstra’s shortest-path algorithm

Edsger Dijkstra, in an interview in 2010 (*CACM*):

... the algorithm for the shortest path, which I designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiance, and tired, we sat down on the cafe terrace to drink a cup of coffee, and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. [Took place in 1956]

Visit http://www.dijkstrarescry.com for all sorts of information on Dijkstra and his contributions. As a historical record, this is a gold mine.
Dijkstra’s shortest-path algorithm

Dijkstra describes the algorithm in English:

- When he designed it in 1956, most people were programming in assembly language!
- Only one high-level language: Fortran, developed by John Backus at IBM and not quite finished.

No theory of order-of-execution time —topic yet to be developed. In paper, Dijkstra says, “my solution is preferred to another one … “the amount of work to be done seems considerably less.”

1968 NATO Conference on Software Engineering, Garmisch, Germany

Term “software engineering” coined for this conference
1968 NATO Conference on Software Engineering, Garmisch, Germany
Marktoberdorf Summer School, Germany, 1998

(Each year, ~100 PhD students from around the world would get two weeks of lectures by CS faculty.)
Dijkstra’s shortest path algorithm

The n (\(> 0\)) nodes of a graph numbered 0..n-1.

Each edge has a positive weight.

weight(v1, v2) is the weight of the edge from node v1 to v2.

Some node v be selected as the *start* node.

Calculate length of shortest path from v to each node.

Use an array L[0..n-1]: for each node w, store in L[w] the length of the shortest path from v to w.

\[
\begin{align*}
L[0] &= 2 \\
L[1] &= 5 \\
L[2] &= 6 \\
L[3] &= 7 \\
L[4] &= 0
\end{align*}
\]
Dijkstra’s shortest path algorithm

Develop algorithm, not just present it.

Need to show you the state of affairs — the relation among all variables — just before each node i is given its final value $L[i]$.

This relation among the variables is an invariant, because it is always true.

Because each node i (except the first) is given its final value $L[i]$ during an iteration of a loop, the invariant is called a loop invariant.

\[
\begin{align*}
L[0] &= 2 \\
L[1] &= 5 \\
L[2] &= 6 \\
L[3] &= 7 \\
L[4] &= 0
\end{align*}
\]
1. **For a Settled node** s, $L[s]$ is length of shortest $v \to s$ path.

2. **All edges leaving** S **go to** F.

3. **For a Frontier node** f, $L[f]$ is length of shortest $v \to f$ path using only red nodes (except for f).

4. **For a Far-off node** b, $L[b] = \infty$.

5. $L[v] = 0$, $L[w] > 0$ for $w \neq v$.
1. **For a Settled node** s, $L[s]$ is length of shortest $v \rightarrow r$ path.
2. **All edges leaving** S **go to** F.
3. **For a Frontier node** f, $L[f]$ is length of shortest $v \rightarrow f$ path using only Settled nodes (except for f).
4. **For a Far-off node** b, $L[b] = \infty$.
5. $L[v] = 0$, $L[w] > 0$ for $w \neq v$

Theorem. For a node f in F with minimum L value (over nodes in F), $L[f]$ is the length of the shortest path from v to f.

Case 1: v is in S.

Case 2: v is in F. Note that $L[v]$ is 0; it has minimum L value.
The algorithm

1. For s, $L[s]$ is length of shortest $v \rightarrow s$ path.

2. Edges leaving S go to F.

3. For f, $L[f]$ is length of shortest $v \rightarrow f$ path using red nodes (except for f).

4. For b in Far off, $L[b] = \infty$

5. $L[v] = 0$, $L[w] > 0$ for $w \neq v$

Theorem: For a node f in F with min L value, $L[f]$ is shortest path length

Loopy question 1:
How does the loop start? What is done to truthify the invariant?
The algorithm

1. For s, $L[s]$ is length of shortest $v \rightarrow s$ path.
2. Edges leaving S go to F.
3. For f, $L[f]$ is length of shortest $v \rightarrow f$ path using red nodes (except for f).
4. For b in Far off, $L[b] = \infty$
5. $L[v] = 0$, $L[w] > 0$ for $w \neq v$

Theorem: For a node f in F with min L value, $L[f]$ is shortest path length

Loopy question 2:
When does loop stop? When is array L completely calculated?
The algorithm

1. For \(s \), \(L[s] \) is length of shortest \(v \rightarrow s \) path.
2. Edges leaving \(S \) go to \(F \).
3. For \(f \), \(L[f] \) is length of shortest \(v \rightarrow f \) path using red nodes (except for \(f \)).
4. For \(b \), \(L[b] = \infty \)
5. \(L[v] = 0, \) \(L[w] > 0 \) for \(w \neq v \)

Theorem: For a node \(f \) in \(F \) with min \(L \) value, \(L[f] \) is shortest path length

For all \(w \), \(L[w] = \infty \); \(L[v] = 0 \);

\(F = \{ \, v \, \}; \quad S = \{ \, \} \);

while \(F \neq \{ \} \) {

\(f = \) node in \(F \) with min \(L \) value;
Remove \(f \) from \(F \), add it to \(S \);

}\n
Loopy question 3:
How is progress toward termination accomplished?
The algorithm

1. For s, L[s] is length of shortest v → s path.
2. Edges leaving S go to F.
3. For f, L[f] is length of shortest v → f path using red nodes (except for f).
4. For b, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

Theorem: For a node f in F with min L value, L[f] is shortest path length

For all w, L[w] = ∞; L[v] = 0; F = { v }; S = { }

while F ≠ {} {
 f = node in F with min L value;
 Remove f from F, add it to S;
 for each edge (f,w) {
 if (L[w] is ∞) add w to F;
 if (L[f] + weight (f,w) < L[w])
 L[w] = L[f] + weight(f,w);
 }
}

Algorithm is finished

Loopy question 4:
How is the invariant maintained?
For all w, \(L[w] = \infty \); \(L[v] = 0 \);

\(F = \{ v \}; \) \(S = \{ \} \);

while \(F \neq \{ \} \) {

\(f = \text{node in } F \text{ with min } L \text{ value}; \)

Remove \(f \) from \(F \), add it to \(S \).

for each edge \((f,w)\) {

\[\text{if (} L[w] \text{ is } \infty \text{) add } w \text{ to } F; \]

\[\text{if (} L[f] + \text{weight}(f,w) < L[w] \) add } w \text{ to } F; \]

\[L[w] = L[f] + \text{weight}(f,w); \]

} **else** \(L[w] = \text{Math.min}(L[w], L[f] + \text{weight}(f,w)); \)

About implementation

- 1. No need to implement \(S \).
- 2. Implement \(F \) as a min-heap.
- 3. Instead of \(\infty \), use \text{Integer.MAX_VALUE}.

For all w, \(L[w] = \infty \); \(L[v] = 0 \);

\(F = \{ v \}; \) \(S = \{ \} \);

while \(F \neq \{ \} \) {

\(f = \text{node in } F \text{ with min } L \text{ value}; \)

Remove \(f \) from \(F \), add it to \(S \).

for each edge \((f,w)\) {

\[\text{if (} L[w] \text{ is } \infty \text{) add } w \text{ to } F; \]

\[\text{if (} L[f] + \text{weight}(f,w) < L[w] \) add } w \text{ to } F; \]

\[L[w] = L[f] + \text{weight}(f,w); \]

} **else** \(L[w] = \text{Math.min}(L[w], L[f] + \text{weight}(f,w)); \)
For all \(w \), \(L[w] = \infty \); \(L[v] = 0 \);
\[F = \{ v \} \];
\[\text{while } F \neq \{ \} \{ \]
\[f = \text{node in } F \text{ with min } L \text{ value}; \]
\[\text{Remove } f \text{ from } F; \]
\[\text{for each edge } (f,w) \{ \]
\[\text{if } (L[w] == \text{Integer.MAX VALUE}) \{ \]
\[L[w] = L[f] + \text{weight}(f,w); \]
\[\text{add } w \text{ to } F; \]
\[\} \]
\[\text{else } L[w] = \]
\[\text{Math.min}(L[w], L[f] + \text{weight}(f,w)); \]
\[\} \]
\[\} \]
\[\text{Complete graph: } O(n^2 \log n) \text{. Sparse graph: } O(n \log n) \]