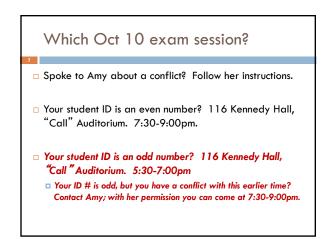
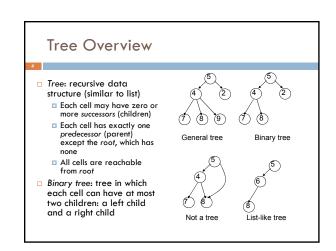


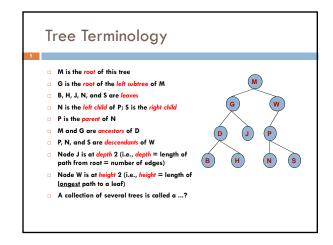
Readings and Homework Textbook, Chapter 23, 24 Homework: A thought problem (draw pictures!) Suppose you use trees to represent student schedules. For each student there would be a general tree with a root node containing student name and ID. The inner nodes in the tree represent courses, and the leaves represent the times/places where each course meets.

Given two such trees, how could you determine whether

and where the two students might run into one-another?







```
Class for Binary Tree Cells
                                           Points to left subtree
class TreeCell<T> {
                                          Points to right subtree
 private T datum;
 private TreeCell<T> left, right;
                                           Constructor:
                                       datum x, no children
 public TreeCell(T x) { datum = x; }
 public TreeCell(T x, TreeCell<T> lft, TreeCell<T> rgt) {
   datum = x;
                                           Constructor:
   left = lft;
   right = rgt;
 more methods: getDatum, setDatum, getLeft, setLeft,
                getRight, setRight
 ... new TreeCell<String>("hello") ...
```

Binary versus general tree

- In a binary tree each node has exactly two pointers: to the left subtree and to the right one
 - □ Of course one or both could be null
- In a general tree a node can have any number of child nodes
 - □ Very useful in some situations ...
 - ... one of which will be our assignments!

Class for General Tree nodes class GTreeCell { private Object datum; private GTreeCell left; private GTreeCell sibling; appropriate getter and setter methods } Parent node points directly only to its leftmost child Leftmost child has pointer to next sibling, which points to next sibling, etc. Tree represented using GTreeCell Tree represented using GTreeCell

Applications of Trees

- Most languages (natural and computer) have a recursive, hierarchical structure
- □ This structure is *implicit* in ordinary textual representation
- Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
- ASTs are easier to optimize, generate code from, etc. than textual representation
- $\ \square$ A parser converts textual representations to AST

Example □ Expression grammar: □ E → integer □ E → (E + E) □ In textual representation □ Parentheses show hierarchical structure □ In tree representation □ Hierarchy is explicit in the structure of the tree | Comparison of the tree | Comparison

Recursion on Trees

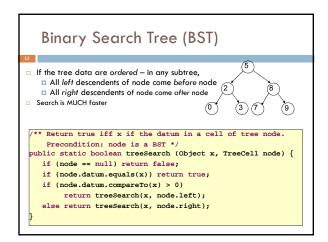
 Recursive methods can be written to operate on trees in an obvious way

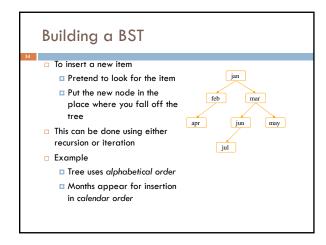
- □ Base case
 - empty tree
 - leaf node
- □ Recursive case
 - solve problem on left and right subtrees
 - put solutions together to get solution for full tree

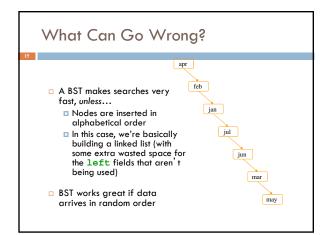
Searching in a Binary Tree

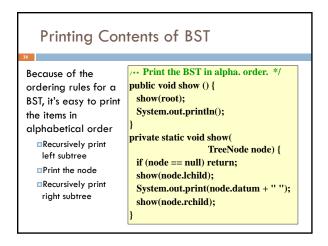
/** Return true iff x if the datum in a cell of tree node */
public static boolean treeSearch(Object x, TreeCell node) {
 if (node == null) return false;
 if (node.datum.equals(x)) return true;
 return treeSearch(x, node.left) ||
 treeSearch(x, node.right);
}

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to 8 write iteratively









```
Tree Traversals
"Walking" over whole tree is
                                   Other standard kinds of
                                   traversals
                                   Preorder traversal
  □Done often enough that
                                      •Process node
    there are standard names
                                      ◆Process left subtree
  □Previous example: inorder
                                      Process right subtree
    traversal

    Postorder traversal

     ■Process left subtree

    Process left subtree

     ■Process node

    Process right subtree

     ■Process right subtree

    Process node

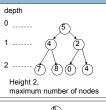
□Note: Can do other

    Level-order traversal

                                      Not recursive uses a queue
 processing besides printing
```

Useful Facts about Binary Trees

- Max number of nodes at depth d: 2^d
- □If height of tree is h min number of nodes in tree: h + 1
- ■Max number of nodes in tree: ${\color{red} \blacksquare} 2^0 + \ldots + 2^h \ = \ 2^{h+1} - 1$
- Complete binary tree
- All levels of tree down to a certain depth are completely filled

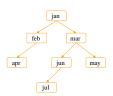


Tree with Parent Pointers

- □ In some applications, it is useful to have trees in which nodes can reference their parents
- □ Analog of doubly-linked lists

Things to Think About

- □ What if we want to delete data from a BST?
- □ A BST works great as long as it's balanced
 - How can we keep it balanced? This turns out to be hard enough to motivate us to create other kinds of trees



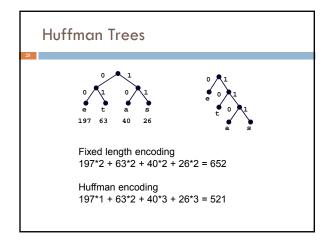
Suffix Trees

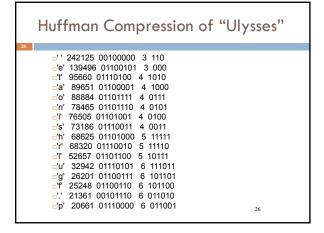
- Given a string s, a suffix tree for s is a tree such that
- each edge has a unique label, which is a nonnull substring of s
- any two edges out of the same node have labels beginning with different characters
- the labels along any path from the root to a leaf concatenate together to give a suffix of s
- all suffixes are represented by some path
- the leaf of the path is labeled with the index of the first character of the suffix in s
- Suffix trees can be constructed in linear time

Suffix Trees dabra\$ abracadabra\$

Suffix Trees

- □ Useful in string matching algorithms (e.g., longest common substring of 2 strings)
 - □ Most algorithms linear time
 - □ Used in genomics (human genome is ~4GB)





Huffman Compression of "Ulysses" ... -'7' 68 00110111 15 111010101001111 -'7' 58 00101111 15 111010101001110 -'8' 19 01011000 16 0110000000100011 -'8' 3 0010011 18 01100000001000101 -'96' 3 0010011 19 011000000100010111 -'+' 2 00101011 19 0110000000100010110 -original size 11904320 -compressed size 6822151 -42.7% compression

BSP Trees

BSP = Binary Space Partition (not related to BST!)

Used to render 3D images composed of polygons

Each node n has one polygon p as data

Left subtree of n contains all polygons on one side of p

Right subtree of n contains all polygons on the other side of p

Order of traversal determines occlusion (hiding)!

Tree Summary A tree is a recursive data structure Each cell has 0 or more successors (children) Each cell except the root has at exactly one predecessor (parent) All cells are reachable from the root A cell with no children is called a leaf Special case: binary tree Binary tree cells have a left and a right child Either or both children can be null Trees are useful for exposing the recursive structure of natural language and computer programs