CS/ENGRD 2110 **Object-Oriented Programming**

and Data Structures Spring 2012 Thorsten Joachims

Lecture 23: Recurrences

Analysis of Merge-Sort

```
public static Comparable[] mergeSort(Comparable[] A, int low, int high) {
   if (low < high) { //at least 2 elements?
  int mid = (low + high)/2;</pre>
                                                                                  cost = c
cost = d
                                                                                 cost = T(n/2) + e
cost = T(n/2) + f
cost = g n + h
        Comparable[] A1 = mergeSort(A, low, mid);
Comparable[] A2 = mergeSort(A, mid+1, high);
        return merge(A1,A2);
```

Recurrence describing computation time:

- T(n) = c + d + e + f + 2 T(n/2) + g n + h ← recurrence - T(1) = i ← base case

How do we solve this recurrence?

Analysis of Merge-Sort

- - T(n) = c + d + e + f + 2 T(n/2) + g n + h
 - T(1) = i
- · First, simplify by dropping lower-order terms and replacing
 - T(n) = 2 T(n/2) + a n
 - T(1) = b
- Simplify even more. Consider only the number of comparisons.
 - T(n) = 2 T(n/2) + n
 - T(1) = 0
- · How do we find the solution?

Solving Recurrences

- · Unfortunately, solving recurrences is like solving differential equations
 - No general technique works for all recurrences
- · Luckily, can get by with a few common patterns
- You learn some more techniques in CS2800

Analysis of Merge-Sort

- · Recurrence for number of comparisons of MergeSort
 - T(n) = 2T(n/2) + n
 - T(1) = 0
 - T(2) = 2
- To show: T(n) is $O(n \log(n))$ for $n \in \{2,4,8,16,32,...\}$
 - Restrict to powers of two to keep algebra simpler
- Proof: use induction on $n \in \{2,4,8,16,32,...\}$
 - Show P(n) = $\{T(n) \le c \text{ n log}(n)\}$ for some fixed constant c.
 - Base: P(2)
 - T(2) = 2 ≤ c 2 log(2) using c=1
 - Strong inductive hypothesis: P(m) = {T(m) ≤ c m log(m)} is true for all $m \in \{2,4,8,16,32,...,k\}$.
 - Induction step: $P(2) \land P(4) \land ... \land P(k) \rightarrow P(2k)$
 - $T(2k) \le 2T(2k/2) + (2k) \le 2(c k \log(k)) + (2k) \le c (2k) \log(k) + c (2k) = c (2k) (\log(k) + 1) = c (2k) \log(2k)$ for $c \ge 1$

Solving Recurrences

- Recurrences are important when using divide & conquer to design an algorithm
- Solution techniques:
 - Can sometimes change variables to get a simpler recurrence
 - Make a guess, then prove the guess correct by induction
 - Build a recursion tree and use it to determine solution
 - Can use the Master Method A "cookbook" scheme that handles many common recurrences

Master Method:

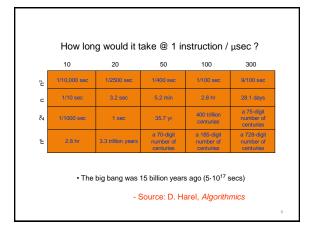
To solve T(n) = a T(n/b) + f(n)compare f(n) with nlog

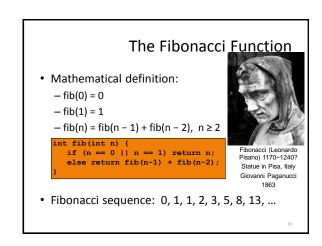
- Solution is T(n) = O(f(n))if f(n) grows more rapidly
- Solution is T(n) = O(n^{log_ba}) if nlog_ba grows more rapidly
- Solution is $T(n) = O(f(n) \log n)$ if both grow at same rate

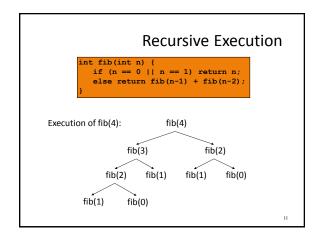
Not an exact statement of the theorem – f(n) must be "wellbehaved"

Recurrence Examples Some common cases: • T(n) = T(n-1) + 1T(n) is O(n) Linear Search • T(n) = T(n-1) + nT(n) is O(n2) QuickSort worst-case • T(n) = T(n/2) + 1T(n) is O(log n) Binary Search • T(n) = T(n/2) + nT(n) is O(n) • T(n) = 2 T(n/2) + n T(n) is O(n log n) MergeSort • T(n) = 2 T(n-1)T(n) is O(2ⁿ)

_	10	50	100	300	1000	
5n	50	250	500	1500	5000	
nlogn	33	282	665	2469	9966	
₂	100	2500	10,000	90,000	1,000,000	
₂	1000	125,000	1,000,000	27 million	1 billion	
2u	1024	a 16-digit number	a 31-digit number	a 91-digit number	a 302-digit number	
귵	3.6 million	a 65-digit number	a 161-digit number	a 623-digit number	unimaginably large	
La La	10 billion	an 85-digit number	a 201-digit number	a 744-digit number	unimaginably large	
_		tons in the kn		ū		
	• µse	ec since the b	ig bang ~ 24	digits		
	- Source: D. Harel, Algorithmics					



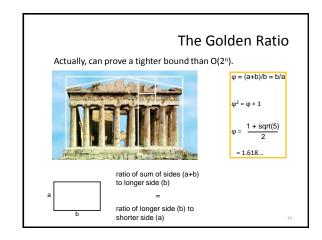




Analysis of Recursive Fib

- Recurrence for computation time of fib
 - T(0) = a
 - T(1) = a
 - T(n) = T(n-1) + T(n-2) + a
- To show: T(n) is O(2ⁿ)
- · Proof: use induction on n
 - Show $P(n) = {T(n) ≤ c 2^n}$ for some fixed constant c.
 - Basis: P(0)
 - T(0) = a ≤ c 2⁰ using c=
 - Basis: P(1)
 - T(1) = a ≤ c 2¹ using c=a
 - Strong inductive hypothesis: P(m) = {T(m) ≤ c 2^m} is true for all m ≤ k.
 - Induction step: P(0) \wedge ... \wedge P(k) → P(k+1)
 - T(k+1) ≤ T(k) + T(k-1) + a ≤ c 2^n + c 2^{n-1} + a = c ¾ 2^{n+1} + a ≤ c 2^{n+1} for any c ≥ ½ a and any n ≥ 2.

13



Fibonacci Recurrence is O(φⁿ)

- Simplification: Ignore constant effort in recursive case.
 - T(0) = a
 - T(1) = a
 - T(n) = T(n-1) + T(n-2)
- Want to show $T(n) \le c\phi^n$ for all $n \ge 0$.
 - have $\phi^2 = \phi + 1$
 - multiplying by $c\phi^n \rightarrow c\phi^{n+2} = c\phi^{n+1} + c\phi^n$
- Baco
 - $T(0) = c = c\phi^0$ for c = a
 - T(1) = c ≤ cφ¹ for c = a
- Induction step:
 - $T(n+2) = T(n+1) + T(n) \le c\phi^{n+1} + c\phi^n = c\phi^{n+2}$

15

Can We Do Better?

Time Complexity:

- Number of times loop is executed? n-1
- Number of basic steps per loop? Constant
- → Complexity of iterative algorithm = O(n)

Much, much, much, better than $O(\varphi^n)$!

16

...But We Can Do Even Better!

- Denote with f, the n-th Fibonacci number
 - $-f_0 = 0$
 - $-f_1 = 1$ $-f_{n+2} = f_{n+1} + f_n$
- $\bullet \quad \text{Note that} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \! \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} f_{n+1} \\ f_{n+2} \end{pmatrix} \! , \, \text{thus} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} f_0 \\ f_1 \end{pmatrix} = \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix}$
- Can compute nth power of matrix by repeated squaring in O(log n) time.
 - Gives complexity O(log n)
 - A little cleverness got us from exponential to logarithmic.

But We Are Not Done Yet...

· Would you believe constant time?

$$f_n = \frac{\varphi^n - \varphi^{n}}{\sqrt{5}}$$

where
$$\varphi = \frac{1 + \sqrt{5}}{2}$$
 φ'

18

Matrix Mult in Less Than O(n³)

 Idea (Strassen's Algorithm): naive 2 x 2 matrix multiplication takes 8 scalar multiplications, but we can do it in 7:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} \ = \ \begin{pmatrix} s_1 + s_2 \cdot s_4 + s_6 & s_4 + s_5 \\ s_6 + s_7 & s_2 \cdot s_3 + s_5 \cdot s_7 \end{pmatrix}$$

• where

$$\begin{array}{lll} -s_1 = (b-d)(g+h) & s_5 = a(f-h) \\ -s_2 = (a+d)(e+h) & s_6 = d(g-e) \\ -s_3 = (a-c)(e+f) & s_7 = e(c+d) \\ -s_4 = h(a+b) & \end{array}$$

Now Apply This Recursively – Divide and Conquer!

- Break 2ⁿ⁺¹ x 2ⁿ⁺¹ matrices up into 4 2ⁿ x 2ⁿ submatrices
- Multiply them the same way

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} S_1 + S_2 - S_4 + S_6 & S_4 + S_5 \\ S_6 + S_7 & S_2 - S_3 + S_5 - S_7 \end{pmatrix}$$

where

$$\begin{split} S_1 &= (B-D)(G+H) & S_5 &= A(F-H) \\ S_2 &= (A+D)(E+H) & S_6 &= D(G-E) \\ S_3 &= (A-C)(E+F) & S_7 &= E(C+D) \\ S_4 &= H(A+B) & S_7 &= E(C+D) \end{split}$$

20

Now Apply This Recursively – Divide and Conquer!

- · Recurrence for the runtime of Strassen's Alg
 - $-M(n) = 7 M(n/2) + cn^2$
 - Solution is $M(n) = O(n^{\log 7}) = O(n^{2.81})$
- · Number of additions
 - Separate proof
 - Number of additions is O(n2)

21

Is That the Best You Can Do?

- How about 3 x 3 for a base case?
 - best known is 23 multiplicationsnot good enough to beat Strassen
- In 1978, Victor Pan discovered how to multiply 70 x 70
- In 1978, Victor Pan discovered how to multiply 70 x 70 matrices with 143640 multiplications, giving O(n^{2.795...})
- Best bound to date (obtained by entirely different methods) is O(n^{2.376...}) (Coppersmith & Winograd 1987)
- Best know lower bound is still $\Omega(n^2)$

22

Moral: Complexity Matters!

 But you are acquiring the best tools to deal with it!

23